10 131
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 131's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X19,10,20,11 X11,18,12,19 X17,12,18,13 X6,14,7,13 X7283 |
| Gauss code | -1, 10, -2, 1, 3, -9, -10, 2, -5, 6, -7, 8, 9, -3, -4, 5, -8, 7, -6, 4 |
| Dowker-Thistlethwaite code | 4 8 -14 2 16 18 -6 20 12 10 |
| Conway Notation | [311,21,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{11, 6}, {5, 9}, {8, 10}, {9, 11}, {7, 1}, {6, 8}, {10, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 7}] |
[edit Notes on presentations of 10 131]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 131"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X19,10,20,11 X11,18,12,19 X17,12,18,13 X6,14,7,13 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, 3, -9, -10, 2, -5, 6, -7, 8, 9, -3, -4, 5, -8, 7, -6, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -14 2 16 18 -6 20 12 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[311,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{-1,-1,-1,-2,1,1,-2,-2,-3,2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 6}, {5, 9}, {8, 10}, {9, 11}, {7, 1}, {6, 8}, {10, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 7}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+8 t-11+8 t^{-1} -2 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-2 z^4} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 31, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-1} -3 q^{-2} +5 q^{-3} -5 q^{-4} +5 q^{-5} -5 q^{-6} +3 q^{-7} -2 q^{-8} + q^{-9} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8+a^8-z^4 a^6-2 z^2 a^6-2 a^6-z^4 a^4-z^2 a^4+2 z^2 a^2+2 a^2} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-4 z^4 a^{10}+4 z^2 a^{10}+2 z^7 a^9-8 z^5 a^9+9 z^3 a^9-3 z a^9+z^8 a^8-z^6 a^8-4 z^4 a^8+2 z^2 a^8+a^8+4 z^7 a^7-12 z^5 a^7+10 z^3 a^7-5 z a^7+z^8 a^6-2 z^4 a^6-3 z^2 a^6+2 a^6+2 z^7 a^5-3 z^5 a^5+2 z^3 a^5-z a^5+2 z^6 a^4-2 z^4 a^4+2 z^2 a^4+z^5 a^3+z^3 a^3+z a^3+3 z^2 a^2-2 a^2} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}+q^{22}-2 q^{20}-q^{18}-q^{16}-q^{14}+q^{12}+2 q^8+q^6+2 q^2} |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-q^{140}+3 q^{138}-5 q^{136}+3 q^{134}-2 q^{132}-4 q^{130}+10 q^{128}-14 q^{126}+14 q^{124}-7 q^{122}-4 q^{120}+14 q^{118}-19 q^{116}+18 q^{114}-8 q^{112}-2 q^{110}+13 q^{108}-15 q^{106}+12 q^{104}+q^{102}-8 q^{100}+14 q^{98}-11 q^{96}+2 q^{94}+7 q^{92}-15 q^{90}+19 q^{88}-18 q^{86}+9 q^{84}+2 q^{82}-17 q^{80}+21 q^{78}-25 q^{76}+14 q^{74}-4 q^{72}-11 q^{70}+16 q^{68}-18 q^{66}+11 q^{64}+q^{62}-12 q^{60}+14 q^{58}-9 q^{56}-q^{54}+11 q^{52}-15 q^{50}+14 q^{48}-4 q^{46}-3 q^{44}+10 q^{42}-14 q^{40}+14 q^{38}-7 q^{36}+2 q^{34}+4 q^{32}-7 q^{30}+8 q^{28}-5 q^{26}+6 q^{24}-q^{22}+2 q^{18}-2 q^{16}+3 q^{14}-q^{12}+2 q^{10}+q^8} |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{19}-q^{17}+q^{15}-2 q^{13}+2 q^5-q^3+2 q} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-q^{52}-2 q^{50}+3 q^{48}+q^{46}-5 q^{44}+2 q^{42}+4 q^{40}-5 q^{38}+5 q^{34}-2 q^{32}-3 q^{30}+4 q^{28}+q^{26}-4 q^{24}+3 q^{20}-2 q^{18}-5 q^{16}+5 q^{14}+q^{12}-5 q^{10}+4 q^8+2 q^6-2 q^4+2 q^2+1} |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{105}-q^{103}-2 q^{101}+4 q^{97}+3 q^{95}-5 q^{93}-7 q^{91}+3 q^{89}+11 q^{87}+2 q^{85}-13 q^{83}-9 q^{81}+11 q^{79}+14 q^{77}-4 q^{75}-17 q^{73}-q^{71}+15 q^{69}+8 q^{67}-14 q^{65}-12 q^{63}+11 q^{61}+14 q^{59}-8 q^{57}-16 q^{55}+6 q^{53}+16 q^{51}-3 q^{49}-16 q^{47}+q^{45}+13 q^{43}+7 q^{41}-11 q^{39}-11 q^{37}+3 q^{35}+16 q^{33}+3 q^{31}-17 q^{29}-10 q^{27}+15 q^{25}+14 q^{23}-11 q^{21}-14 q^{19}+5 q^{17}+10 q^{15}-q^{13}-6 q^{11}+q^9+4 q^7-q^5+q^3+2 q^{-1} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}+q^{22}-2 q^{20}-q^{18}-q^{16}-q^{14}+q^{12}+2 q^8+q^6+2 q^2} |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{76}-2 q^{74}+6 q^{72}-14 q^{70}+21 q^{68}-32 q^{66}+44 q^{64}-48 q^{62}+47 q^{60}-40 q^{58}+28 q^{56}-6 q^{54}-22 q^{52}+38 q^{50}-60 q^{48}+76 q^{46}-84 q^{44}+88 q^{42}-74 q^{40}+66 q^{38}-40 q^{36}+18 q^{34}+4 q^{32}-26 q^{30}+36 q^{28}-46 q^{26}+36 q^{24}-38 q^{22}+28 q^{20}-24 q^{18}+14 q^{16}-8 q^{14}+13 q^{12}+4 q^8+2 q^4+2 q^2} |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{72}-q^{68}-q^{66}+q^{64}+2 q^{62}-2 q^{60}-2 q^{58}+q^{56}+q^{54}-2 q^{52}-3 q^{50}+2 q^{48}+4 q^{46}+2 q^{40}+2 q^{38}-q^{30}-2 q^{28}-q^{26}-4 q^{24}-6 q^{22}+q^{20}+2 q^{18}-q^{16}+5 q^{12}+5 q^{10}-q^6+3 q^4+q^2} |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{58}+q^{56}-4 q^{52}+q^{50}-q^{48}-2 q^{46}+5 q^{44}+3 q^{42}+6 q^{38}+q^{36}-4 q^{34}-2 q^{32}-3 q^{30}-3 q^{28}-4 q^{26}-q^{24}+2 q^{22}-3 q^{20}+5 q^{16}-2 q^{14}+2 q^{12}+6 q^{10}+3 q^4} |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{37}+q^{33}+q^{29}-2 q^{27}-q^{25}-2 q^{23}-q^{21}-q^{19}+q^{15}+2 q^{11}+q^9+2 q^7+2 q^3} |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{78}+2 q^{72}-4 q^{68}-2 q^{66}-q^{64}-5 q^{62}-5 q^{60}+3 q^{58}+8 q^{56}+3 q^{54}+6 q^{52}+12 q^{50}+6 q^{48}-3 q^{46}-q^{44}-4 q^{42}-10 q^{40}-8 q^{38}-4 q^{36}-4 q^{34}-6 q^{32}+q^{30}+3 q^{28}-3 q^{26}-q^{24}+5 q^{22}+3 q^{20}+3 q^{16}+6 q^{14}+4 q^{12}+q^{10}+q^8+3 q^6} |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}+q^{42}+q^{40}+q^{36}-2 q^{34}-q^{32}-2 q^{30}-2 q^{28}-q^{26}-q^{24}+q^{18}+2 q^{14}+q^{12}+2 q^{10}+2 q^8+2 q^4} |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{60}-q^{58}+3 q^{56}-4 q^{54}+4 q^{52}-5 q^{50}+5 q^{48}-4 q^{46}+3 q^{44}-q^{42}-2 q^{40}+4 q^{38}-7 q^{36}+8 q^{34}-10 q^{32}+9 q^{30}-9 q^{28}+6 q^{26}-5 q^{24}+2 q^{22}+q^{20}-2 q^{18}+5 q^{16}-4 q^{14}+6 q^{12}-4 q^{10}+4 q^8-2 q^6+3 q^4} |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{98}-q^{94}-q^{92}+2 q^{90}+2 q^{88}-3 q^{86}-4 q^{84}+4 q^{80}+q^{78}-5 q^{76}-3 q^{74}+4 q^{72}+6 q^{70}+q^{68}-4 q^{66}+5 q^{62}+4 q^{60}-2 q^{58}-3 q^{56}+q^{54}+2 q^{52}-3 q^{50}-5 q^{48}-q^{46}+3 q^{44}-q^{42}-5 q^{40}-3 q^{38}+3 q^{36}+3 q^{34}-3 q^{32}-4 q^{30}+q^{28}+6 q^{26}+q^{24}-3 q^{22}-2 q^{20}+4 q^{18}+5 q^{16}+q^{14}-2 q^{12}-q^{10}+q^8+3 q^6} |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{82}-q^{80}+2 q^{78}-3 q^{76}+3 q^{74}-5 q^{72}+2 q^{70}-5 q^{68}+4 q^{66}-3 q^{64}+3 q^{62}+q^{60}+4 q^{58}+5 q^{56}+6 q^{52}-5 q^{50}+5 q^{48}-10 q^{46}+4 q^{44}-11 q^{42}+3 q^{40}-9 q^{38}+3 q^{36}-4 q^{34}+2 q^{32}-q^{30}-q^{28}+2 q^{26}-2 q^{24}+5 q^{22}-3 q^{20}+5 q^{18}-q^{16}+7 q^{14}+3 q^{10}-q^8+3 q^6} |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-q^{140}+3 q^{138}-5 q^{136}+3 q^{134}-2 q^{132}-4 q^{130}+10 q^{128}-14 q^{126}+14 q^{124}-7 q^{122}-4 q^{120}+14 q^{118}-19 q^{116}+18 q^{114}-8 q^{112}-2 q^{110}+13 q^{108}-15 q^{106}+12 q^{104}+q^{102}-8 q^{100}+14 q^{98}-11 q^{96}+2 q^{94}+7 q^{92}-15 q^{90}+19 q^{88}-18 q^{86}+9 q^{84}+2 q^{82}-17 q^{80}+21 q^{78}-25 q^{76}+14 q^{74}-4 q^{72}-11 q^{70}+16 q^{68}-18 q^{66}+11 q^{64}+q^{62}-12 q^{60}+14 q^{58}-9 q^{56}-q^{54}+11 q^{52}-15 q^{50}+14 q^{48}-4 q^{46}-3 q^{44}+10 q^{42}-14 q^{40}+14 q^{38}-7 q^{36}+2 q^{34}+4 q^{32}-7 q^{30}+8 q^{28}-5 q^{26}+6 q^{24}-q^{22}+2 q^{18}-2 q^{16}+3 q^{14}-q^{12}+2 q^{10}+q^8} |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 131"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+8 t-11+8 t^{-1} -2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-2 z^4} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 31, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-1} -3 q^{-2} +5 q^{-3} -5 q^{-4} +5 q^{-5} -5 q^{-6} +3 q^{-7} -2 q^{-8} + q^{-9} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8+a^8-z^4 a^6-2 z^2 a^6-2 a^6-z^4 a^4-z^2 a^4+2 z^2 a^2+2 a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-4 z^4 a^{10}+4 z^2 a^{10}+2 z^7 a^9-8 z^5 a^9+9 z^3 a^9-3 z a^9+z^8 a^8-z^6 a^8-4 z^4 a^8+2 z^2 a^8+a^8+4 z^7 a^7-12 z^5 a^7+10 z^3 a^7-5 z a^7+z^8 a^6-2 z^4 a^6-3 z^2 a^6+2 a^6+2 z^7 a^5-3 z^5 a^5+2 z^3 a^5-z a^5+2 z^6 a^4-2 z^4 a^4+2 z^2 a^4+z^5 a^3+z^3 a^3+z a^3+3 z^2 a^2-2 a^2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_14, 9_8,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 131"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+8 t-11+8 t^{-1} -2 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-1} -3 q^{-2} +5 q^{-3} -5 q^{-4} +5 q^{-5} -5 q^{-6} +3 q^{-7} -2 q^{-8} + q^{-9} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_14, 9_8,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 131. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-1} + q^{-2} -4 q^{-3} +5 q^{-4} +3 q^{-5} -13 q^{-6} +11 q^{-7} +7 q^{-8} -23 q^{-9} +14 q^{-10} +12 q^{-11} -26 q^{-12} +10 q^{-13} +17 q^{-14} -23 q^{-15} +3 q^{-16} +18 q^{-17} -16 q^{-18} -2 q^{-19} +13 q^{-20} -7 q^{-21} -4 q^{-22} +6 q^{-23} - q^{-24} -2 q^{-25} + q^{-26} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q^{-1} -2 q^{-2} + q^{-3} -2 q^{-4} +7 q^{-5} -5 q^{-6} -6 q^{-7} +3 q^{-8} +18 q^{-9} -10 q^{-10} -25 q^{-11} +6 q^{-12} +43 q^{-13} -9 q^{-14} -50 q^{-15} - q^{-16} +63 q^{-17} +4 q^{-18} -63 q^{-19} -15 q^{-20} +63 q^{-21} +22 q^{-22} -57 q^{-23} -27 q^{-24} +46 q^{-25} +35 q^{-26} -38 q^{-27} -37 q^{-28} +24 q^{-29} +43 q^{-30} -16 q^{-31} -40 q^{-32} + q^{-33} +41 q^{-34} +6 q^{-35} -33 q^{-36} -15 q^{-37} +25 q^{-38} +19 q^{-39} -15 q^{-40} -18 q^{-41} +5 q^{-42} +15 q^{-43} -9 q^{-45} -3 q^{-46} +5 q^{-47} +2 q^{-48} - q^{-49} -2 q^{-50} + q^{-51} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+ q^{-1} -2 q^{-2} - q^{-3} +4 q^{-4} -2 q^{-5} +2 q^{-6} -7 q^{-7} -4 q^{-8} +22 q^{-9} -5 q^{-11} -37 q^{-12} -17 q^{-13} +73 q^{-14} +34 q^{-15} -11 q^{-16} -108 q^{-17} -72 q^{-18} +132 q^{-19} +115 q^{-20} +21 q^{-21} -184 q^{-22} -170 q^{-23} +150 q^{-24} +192 q^{-25} +92 q^{-26} -207 q^{-27} -256 q^{-28} +119 q^{-29} +211 q^{-30} +154 q^{-31} -174 q^{-32} -282 q^{-33} +76 q^{-34} +172 q^{-35} +181 q^{-36} -117 q^{-37} -262 q^{-38} +39 q^{-39} +112 q^{-40} +186 q^{-41} -57 q^{-42} -222 q^{-43} + q^{-44} +44 q^{-45} +180 q^{-46} +12 q^{-47} -168 q^{-48} -38 q^{-49} -29 q^{-50} +151 q^{-51} +74 q^{-52} -89 q^{-53} -50 q^{-54} -94 q^{-55} +85 q^{-56} +95 q^{-57} -5 q^{-58} -17 q^{-59} -112 q^{-60} +8 q^{-61} +58 q^{-62} +36 q^{-63} +32 q^{-64} -73 q^{-65} -27 q^{-66} +5 q^{-67} +21 q^{-68} +46 q^{-69} -21 q^{-70} -16 q^{-71} -15 q^{-72} -3 q^{-73} +25 q^{-74} -7 q^{-77} -7 q^{-78} +6 q^{-79} + q^{-80} +2 q^{-81} - q^{-82} -2 q^{-83} + q^{-84} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




