K11a115

From Knot Atlas
Jump to navigationJump to search

K11a114.gif

K11a114

K11a116.gif

K11a116

K11a115.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a115 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,6,15,5 X18,7,19,8 X2,10,3,9 X20,11,21,12 X6,14,7,13 X22,16,1,15 X12,17,13,18 X8,19,9,20 X16,22,17,21
Gauss code 1, -5, 2, -1, 3, -7, 4, -10, 5, -2, 6, -9, 7, -3, 8, -11, 9, -4, 10, -6, 11, -8
Dowker-Thistlethwaite code 4 10 14 18 2 20 6 22 12 8 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a115 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a115/ThurstonBennequinNumber
Hyperbolic Volume 16.4283
A-Polynomial See Data:K11a115/A-polynomial

[edit Notes for K11a115's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 0 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11a115's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^3+13 t^2-27 t+35-27 t^{-1} +13 t^{-2} -3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^6-5 z^4-2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 121, 0 }
Jones polynomial [math]\displaystyle{ -q^7+4 q^6-8 q^5+13 q^4-17 q^3+19 q^2-19 q+17-12 q^{-1} +7 q^{-2} -3 q^{-3} + q^{-4} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -2 z^6 a^{-2} -z^6+a^2 z^4-7 z^4 a^{-2} +3 z^4 a^{-4} -2 z^4+2 a^2 z^2-9 z^2 a^{-2} +7 z^2 a^{-4} -z^2 a^{-6} -z^2+a^2-4 a^{-2} +4 a^{-4} - a^{-6} +1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +7 z^9 a^{-1} +12 z^9 a^{-3} +5 z^9 a^{-5} +14 z^8 a^{-2} +8 z^8 a^{-4} +4 z^8 a^{-6} +10 z^8+9 a z^7-6 z^7 a^{-1} -29 z^7 a^{-3} -13 z^7 a^{-5} +z^7 a^{-7} +6 a^2 z^6-53 z^6 a^{-2} -44 z^6 a^{-4} -14 z^6 a^{-6} -17 z^6+3 a^3 z^5-13 a z^5-12 z^5 a^{-1} +10 z^5 a^{-3} +3 z^5 a^{-5} -3 z^5 a^{-7} +a^4 z^4-6 a^2 z^4+54 z^4 a^{-2} +51 z^4 a^{-4} +15 z^4 a^{-6} +11 z^4-2 a^3 z^3+10 a z^3+13 z^3 a^{-1} +6 z^3 a^{-3} +8 z^3 a^{-5} +3 z^3 a^{-7} -a^4 z^2+4 a^2 z^2-25 z^2 a^{-2} -23 z^2 a^{-4} -5 z^2 a^{-6} -2 z^2-2 a z-3 z a^{-1} -3 z a^{-3} -3 z a^{-5} -z a^{-7} -a^2+4 a^{-2} +4 a^{-4} + a^{-6} +1 }[/math]
The A2 invariant Data:K11a115/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a115/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{308}{3} }[/math] [math]\displaystyle{ \frac{172}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 96 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{2464}{3} }[/math] [math]\displaystyle{ -\frac{1376}{3} }[/math] [math]\displaystyle{ -\frac{12151}{15} }[/math] [math]\displaystyle{ \frac{2388}{5} }[/math] [math]\displaystyle{ -\frac{56764}{45} }[/math] [math]\displaystyle{ \frac{1879}{9} }[/math] [math]\displaystyle{ -\frac{4951}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a115. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
15           1-1
13          3 3
11         51 -4
9        83  5
7       95   -4
5      108    2
3     99     0
1    810      -2
-1   510       5
-3  27        -5
-5 15         4
-7 2          -2
-91           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a114.gif

K11a114

K11a116.gif

K11a116