K11a116

From Knot Atlas
Jump to navigationJump to search

K11a115.gif

K11a115

K11a117.gif

K11a117

K11a116.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a116 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,6,15,5 X18,8,19,7 X2,10,3,9 X20,11,21,12 X8,14,9,13 X22,16,1,15 X6,18,7,17 X12,19,13,20 X16,22,17,21
Gauss code 1, -5, 2, -1, 3, -9, 4, -7, 5, -2, 6, -10, 7, -3, 8, -11, 9, -4, 10, -6, 11, -8
Dowker-Thistlethwaite code 4 10 14 18 2 20 8 22 6 12 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a116 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11a116's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^3+15 t^2-31 t+39-31 t^{-1} +15 t^{-2} -3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^6-3 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 137, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+4 q^{10}-9 q^9+15 q^8-20 q^7+22 q^6-22 q^5+19 q^4-13 q^3+8 q^2-3 q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} -2 z^6 a^{-6} +z^4 a^{-2} -z^4 a^{-4} -6 z^4 a^{-6} +3 z^4 a^{-8} +2 z^2 a^{-2} +2 z^2 a^{-4} -7 z^2 a^{-6} +6 z^2 a^{-8} -z^2 a^{-10} + a^{-2} +2 a^{-4} -4 a^{-6} +3 a^{-8} - a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^{10} a^{-6} +2 z^{10} a^{-8} +5 z^9 a^{-5} +12 z^9 a^{-7} +7 z^9 a^{-9} +5 z^8 a^{-4} +10 z^8 a^{-6} +15 z^8 a^{-8} +10 z^8 a^{-10} +3 z^7 a^{-3} -6 z^7 a^{-5} -20 z^7 a^{-7} -3 z^7 a^{-9} +8 z^7 a^{-11} +z^6 a^{-2} -10 z^6 a^{-4} -33 z^6 a^{-6} -42 z^6 a^{-8} -16 z^6 a^{-10} +4 z^6 a^{-12} -7 z^5 a^{-3} -2 z^5 a^{-5} +6 z^5 a^{-7} -12 z^5 a^{-9} -12 z^5 a^{-11} +z^5 a^{-13} -3 z^4 a^{-2} +6 z^4 a^{-4} +35 z^4 a^{-6} +41 z^4 a^{-8} +10 z^4 a^{-10} -5 z^4 a^{-12} +4 z^3 a^{-3} +3 z^3 a^{-5} +6 z^3 a^{-7} +14 z^3 a^{-9} +6 z^3 a^{-11} -z^3 a^{-13} +3 z^2 a^{-2} -4 z^2 a^{-4} -19 z^2 a^{-6} -17 z^2 a^{-8} -4 z^2 a^{-10} +z^2 a^{-12} -2 z a^{-5} -4 z a^{-7} -4 z a^{-9} -2 z a^{-11} - a^{-2} +2 a^{-4} +4 a^{-6} +3 a^{-8} + a^{-10} }[/math]
The A2 invariant Data:K11a116/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a116/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a2,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a2,}

Vassiliev invariants

V2 and V3: (2, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{508}{3} }[/math] [math]\displaystyle{ \frac{116}{3} }[/math] [math]\displaystyle{ 256 }[/math] [math]\displaystyle{ \frac{2528}{3} }[/math] [math]\displaystyle{ \frac{416}{3} }[/math] [math]\displaystyle{ 192 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{4064}{3} }[/math] [math]\displaystyle{ \frac{928}{3} }[/math] [math]\displaystyle{ \frac{59791}{15} }[/math] [math]\displaystyle{ -\frac{4844}{15} }[/math] [math]\displaystyle{ \frac{97804}{45} }[/math] [math]\displaystyle{ \frac{1073}{9} }[/math] [math]\displaystyle{ \frac{4111}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a116. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          3 3
19         61 -5
17        93  6
15       116   -5
13      119    2
11     1111     0
9    811      -3
7   511       6
5  38        -5
3 16         5
1 2          -2
-11           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a115.gif

K11a115

K11a117.gif

K11a117