K11a63

From Knot Atlas
Jump to navigationJump to search

K11a62.gif

K11a62

K11a64.gif

K11a64

K11a63.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a63 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X16,5,17,6 X10,8,11,7 X2,9,3,10 X18,11,19,12 X20,13,21,14 X22,15,1,16 X6,17,7,18 X14,19,15,20 X12,21,13,22
Gauss code 1, -5, 2, -1, 3, -9, 4, -2, 5, -4, 6, -11, 7, -10, 8, -3, 9, -6, 10, -7, 11, -8
Dowker-Thistlethwaite code 4 8 16 10 2 18 20 22 6 14 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a63 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{2,3\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a63/ThurstonBennequinNumber
Hyperbolic Volume 14.0116
A-Polynomial See Data:K11a63/A-polynomial

[edit Notes for K11a63's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 4

[edit Notes for K11a63's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^3+11 t^2-21 t+25-21 t^{-1} +11 t^{-2} -2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^6-z^4+5 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 93, -4 }
Jones polynomial [math]\displaystyle{ 1-3 q^{-1} +7 q^{-2} -10 q^{-3} +13 q^{-4} -15 q^{-5} +15 q^{-6} -12 q^{-7} +9 q^{-8} -5 q^{-9} +2 q^{-10} - q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{10}-2 a^{10}+2 z^4 a^8+5 z^2 a^8+3 a^8-z^6 a^6-2 z^4 a^6-z^2 a^6-a^6-z^6 a^4-2 z^4 a^4+z^4 a^2+2 z^2 a^2+a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^{13}-3 z^3 a^{13}+2 z a^{13}+2 z^6 a^{12}-4 z^4 a^{12}+z^2 a^{12}+3 z^7 a^{11}-5 z^5 a^{11}+2 z^3 a^{11}-z a^{11}+4 z^8 a^{10}-10 z^6 a^{10}+16 z^4 a^{10}-12 z^2 a^{10}+2 a^{10}+3 z^9 a^9-4 z^7 a^9+z^5 a^9+7 z^3 a^9-3 z a^9+z^{10} a^8+6 z^8 a^8-23 z^6 a^8+35 z^4 a^8-18 z^2 a^8+3 a^8+6 z^9 a^7-12 z^7 a^7+6 z^5 a^7+4 z^3 a^7-z a^7+z^{10} a^6+6 z^8 a^6-20 z^6 a^6+18 z^4 a^6-7 z^2 a^6+a^6+3 z^9 a^5-2 z^7 a^5-9 z^5 a^5+7 z^3 a^5-2 z a^5+4 z^8 a^4-8 z^6 a^4+z^2 a^4+3 z^7 a^3-8 z^5 a^3+5 z^3 a^3-z a^3+z^6 a^2-3 z^4 a^2+3 z^2 a^2-a^2 }[/math]
The A2 invariant Data:K11a63/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a63/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a309,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (5, -14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 20 }[/math] [math]\displaystyle{ -112 }[/math] [math]\displaystyle{ 200 }[/math] [math]\displaystyle{ \frac{2038}{3} }[/math] [math]\displaystyle{ \frac{314}{3} }[/math] [math]\displaystyle{ -2240 }[/math] [math]\displaystyle{ -\frac{13792}{3} }[/math] [math]\displaystyle{ -\frac{2368}{3} }[/math] [math]\displaystyle{ -656 }[/math] [math]\displaystyle{ \frac{4000}{3} }[/math] [math]\displaystyle{ 6272 }[/math] [math]\displaystyle{ \frac{40760}{3} }[/math] [math]\displaystyle{ \frac{6280}{3} }[/math] [math]\displaystyle{ \frac{191023}{6} }[/math] [math]\displaystyle{ \frac{1154}{3} }[/math] [math]\displaystyle{ \frac{116558}{9} }[/math] [math]\displaystyle{ \frac{5749}{18} }[/math] [math]\displaystyle{ \frac{10063}{6} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11a63. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1          2 -2
-3         51 4
-5        63  -3
-7       74   3
-9      86    -2
-11     77     0
-13    58      3
-15   47       -3
-17  15        4
-19 14         -3
-21 1          1
-231           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a62.gif

K11a62

K11a64.gif

K11a64