K11a64

From Knot Atlas
Jump to navigationJump to search

K11a63.gif

K11a63

K11a65.gif

K11a65

K11a64.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a64 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X16,5,17,6 X10,8,11,7 X2,9,3,10 X20,11,21,12 X22,13,1,14 X18,15,19,16 X6,17,7,18 X14,19,15,20 X12,21,13,22
Gauss code 1, -5, 2, -1, 3, -9, 4, -2, 5, -4, 6, -11, 7, -10, 8, -3, 9, -8, 10, -6, 11, -7
Dowker-Thistlethwaite code 4 8 16 10 2 20 22 18 6 14 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a64 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{2,3\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a64/ThurstonBennequinNumber
Hyperbolic Volume 14.0131
A-Polynomial See Data:K11a64/A-polynomial

[edit Notes for K11a64's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 4

[edit Notes for K11a64's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^3+11 t^2-22 t+27-22 t^{-1} +11 t^{-2} -2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^6-z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 97, -4 }
Jones polynomial [math]\displaystyle{ 1-2 q^{-1} +5 q^{-2} -9 q^{-3} +13 q^{-4} -15 q^{-5} +16 q^{-6} -14 q^{-7} +11 q^{-8} -7 q^{-9} +3 q^{-10} - q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{10}-a^{10}+2 z^4 a^8+3 z^2 a^8-z^6 a^6-z^4 a^6+3 z^2 a^6+3 a^6-z^6 a^4-3 z^4 a^4-4 z^2 a^4-3 a^4+z^4 a^2+3 z^2 a^2+2 a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^{13}-2 z^3 a^{13}+z a^{13}+3 z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+5 z^7 a^{11}-8 z^5 a^{11}+4 z^3 a^{11}-z a^{11}+5 z^8 a^{10}-6 z^6 a^{10}+3 z^4 a^{10}-3 z^2 a^{10}+a^{10}+3 z^9 a^9+z^7 a^9-5 z^5 a^9+2 z^3 a^9+z^{10} a^8+5 z^8 a^8-7 z^6 a^8+2 z^4 a^8+5 z^9 a^7-7 z^7 a^7+7 z^5 a^7-7 z^3 a^7+2 z a^7+z^{10} a^6+2 z^8 a^6-11 z^4 a^6+11 z^2 a^6-3 a^6+2 z^9 a^5-z^7 a^5-3 z^5 a^5+2 z^3 a^5-z a^5+2 z^8 a^4-z^6 a^4-9 z^4 a^4+11 z^2 a^4-3 a^4+2 z^7 a^3-6 z^5 a^3+5 z^3 a^3-z a^3+z^6 a^2-4 z^4 a^2+5 z^2 a^2-2 a^2 }[/math]
The A2 invariant Data:K11a64/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a64/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n174,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (4, -11)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ -88 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1448}{3} }[/math] [math]\displaystyle{ \frac{208}{3} }[/math] [math]\displaystyle{ -1408 }[/math] [math]\displaystyle{ -\frac{8944}{3} }[/math] [math]\displaystyle{ -\frac{1408}{3} }[/math] [math]\displaystyle{ -440 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 3872 }[/math] [math]\displaystyle{ \frac{23168}{3} }[/math] [math]\displaystyle{ \frac{3328}{3} }[/math] [math]\displaystyle{ \frac{285542}{15} }[/math] [math]\displaystyle{ \frac{112}{15} }[/math] [math]\displaystyle{ \frac{347648}{45} }[/math] [math]\displaystyle{ \frac{2602}{9} }[/math] [math]\displaystyle{ \frac{14822}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11a64. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1          1 -1
-3         41 3
-5        62  -4
-7       73   4
-9      86    -2
-11     87     1
-13    68      2
-15   58       -3
-17  26        4
-19 15         -4
-21 2          2
-231           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a63.gif

K11a63

K11a65.gif

K11a65