The Coloured Jones Polynomials: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:
<!--$$?ColouredJones$$-->
<!--$$?ColouredJones$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout1|n=1|s=ColouredJones}}
n = 1 |
ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.
n1 = 2 |
{{HelpAndAbout2|n=2|s=ColouredJones}}
in = <nowiki>ColouredJones</nowiki> |
The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.
out= <nowiki>ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.</nowiki> |
{{HelpAndAbout3}}
about= <nowiki>The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.</nowiki>}}
<!--END-->
<!--END-->


Line 19: Line 20:
<!--$$ColouredJones[Knot[4, 1], 3][q]$$-->
<!--$$ColouredJones[Knot[4, 1], 3][q]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=3}}
{{InOut|
n = 3 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[4, 1], 3][q]</nowiki></pre>
in = <nowiki>ColouredJones[Knot[4, 1], 3][q]</nowiki> |
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> -12 -11 -10 2 2 3 3 2 4 6 8 10 11 12
3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q + 2 q - q - q + q
out= <nowiki> -12 -11 -10 2 2 3 3 2 4 6
3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q +
8 6 4 2
8 6 4 2
q q q q</nowiki></pre>
q q q q
{{InOut3}}
8 10 11 12
2 q - q - q + q</nowiki>}}
<!--END-->
<!--END-->


Line 34: Line 38:
<!--$$ColouredJones[Knot[4, 1], 1][q]$$-->
<!--$$ColouredJones[Knot[4, 1], 1][q]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=4}}
{{InOut|
n = 4 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[4, 1], 1][q]</nowiki></pre>
in = <nowiki>ColouredJones[Knot[4, 1], 1][q]</nowiki> |
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -2 1 2
out= <nowiki> -2 1 2
1 + q - - - q + q
1 + q - - - q + q
q</nowiki></pre>
q</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Jones[Knot[4, 1]][q]$$-->
<!--$$Jones[Knot[4, 1]][q]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=5}}
{{InOut|
n = 5 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[4, 1]][q]</nowiki></pre>
in = <nowiki>Jones[Knot[4, 1]][q]</nowiki> |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> -2 1 2
out= <nowiki> -2 1 2
1 + q - - - q + q
1 + q - - - q + q
q</nowiki></pre>
q</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$?CJ`Summand$$-->
<!--$$?CJ`Summand$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=6|s=CJ`Summand}}
n = 6 |
CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.
in = <nowiki>CJ`Summand</nowiki> |
{{Help2}}
out= <nowiki>CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.</nowiki>}}
<!--END-->
<!--END-->


Line 63: Line 68:
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$-->
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=7}}
{{InOut|
n = 7 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>s = CJ`Summand[Mirror[Knot[3, 1]], n]</nowiki></pre>
in = <nowiki>s = CJ`Summand[Mirror[Knot[3, 1]], n]</nowiki> |
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki> (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2 1 1
{CJ`q qBinomial[0, 0, ----] qBinomial[CJ`k[1], 0, ----]
out= <nowiki> (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2 1
CJ`q CJ`q
{CJ`q qBinomial[0, 0, ----]
CJ`q
1 1
qBinomial[CJ`k[1], 0, ----] qBinomial[CJ`k[1], CJ`k[1], ----]
CJ`q CJ`q
1 n 1
n 1 n 1
qBinomial[CJ`k[1], CJ`k[1], ----] qPochhammer[CJ`q , ----, 0]
qPochhammer[CJ`q , ----, 0] qPochhammer[CJ`q , ----, CJ`k[1]]
CJ`q CJ`q
CJ`q CJ`q
n 1 n - CJ`k[1] 1
n - CJ`k[1] 1
qPochhammer[CJ`q , ----, CJ`k[1]] qPochhammer[CJ`q , ----, 0], {CJ`k[1]}}
qPochhammer[CJ`q , ----, 0], {CJ`k[1]}}
CJ`q CJ`q</nowiki></pre>
CJ`q</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 83: Line 92:
<!--$$?qPochhammer$$-->
<!--$$?qPochhammer$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=8|s=qPochhammer}}
n = 8 |
qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's
in = <nowiki>qPochhammer</nowiki> |
out= <nowiki>qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's
www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/
www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/</nowiki>}}
{{Help2}}
<!--END-->
<!--END-->


<!--$$?qBinomial$$-->
<!--$$?qBinomial$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=9|s=qBinomial}}
n = 9 |
qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is
in = <nowiki>qBinomial</nowiki> |
qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].
out= <nowiki>qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is
{{Help2}}
qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].</nowiki>}}
<!--END-->
<!--END-->


Line 123: Line 134:
<!--$$?qExpand$$-->
<!--$$?qExpand$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=10|s=qExpand}}
n = 10 |
qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.
in = <nowiki>qExpand</nowiki> |
{{Help2}}
out= <nowiki>qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.</nowiki>}}
<!--END-->
<!--END-->


Line 132: Line 144:
<!--$$qPochhammer[a, q, 6] // qExpand$$-->
<!--$$qPochhammer[a, q, 6] // qExpand$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut1|n=11}}
n = 11 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>qPochhammer[a, q, 6] // qExpand</nowiki></pre>
in = <nowiki>qPochhammer[a, q, 6] // qExpand</nowiki> |
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki> 2 3 4 5
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )</nowiki></pre>
out= <nowiki> 2 3 4 5
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$-->
<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut1|n=12}}
n = 12 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand</nowiki></pre>
in = <nowiki>First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand</nowiki> |
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki> 11 2 3
out= <nowiki> 11 2 3
CJ`q (-1 + CJ`q ) (-1 + CJ`q )</nowiki></pre>
CJ`q (-1 + CJ`q ) (-1 + CJ`q )</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


Line 154: Line 166:
<!--$$?ColoredJones$$-->
<!--$$?ColoredJones$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=13|s=ColoredJones}}
n = 13 |
Type ColoredJones and see for yourself.
in = <nowiki>ColoredJones</nowiki> |
{{Help2}}
out= <nowiki>Type ColoredJones and see for yourself.</nowiki>}}
<!--END-->
<!--END-->



Revision as of 14:08, 30 August 2005


KnotTheory` can compute the coloured Jones polynomial of braid closures, using the same formulas as in [Garoufalidis Le]:

(For In[1] see Setup)

In[1]:= ?ColouredJones
ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.
In[2]:= ColouredJones::about
The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.

Thus, for example, here's the coloured Jones polynomial of the knot 4_1 in the 4-dimensional representation of :

In[3]:= ColouredJones[Knot[4, 1], 3][q]
Out[3]= -12 -11 -10 2 2 3 3 2 4 6 3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q + 8 6 4 2 q q q q 8 10 11 12 2 q - q - q + q

And here's the coloured Jones polynomial of the same knot in the two dimensional representation of ; this better be equal to the ordinary Jones polynomial of 4_1!

In[4]:= ColouredJones[Knot[4, 1], 1][q]
Out[4]= -2 1 2 1 + q - - - q + q q
In[5]:= Jones[Knot[4, 1]][q]
Out[5]= -2 1 2 1 + q - - - q + q q
In[6]:= ?CJ`Summand
CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.

The coloured Jones polynomial of 3_1 is computed via a single summation. Indeed,

In[7]:= s = CJ`Summand[Mirror[Knot[3, 1]], n]
Out[7]= (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2 1 {CJ`q qBinomial[0, 0, ----] CJ`q 1 1 qBinomial[CJ`k[1], 0, ----] qBinomial[CJ`k[1], CJ`k[1], ----] CJ`q CJ`q n 1 n 1 qPochhammer[CJ`q , ----, 0] qPochhammer[CJ`q , ----, CJ`k[1]] CJ`q CJ`q n - CJ`k[1] 1 qPochhammer[CJ`q , ----, 0], {CJ`k[1]}} CJ`q

The symbols in the above formula require a definition:

In[8]:= ?qPochhammer
qPochhammer[a, q, k] represents the q-shifted factorial of a in base q with index k. See Eric Weisstein's http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/
In[9]:= ?qBinomial
qBinomial[n, k, q] represents the q-binomial coefficient of n and k in base q. For k<0 it is 0; otherwise it is qPochhammer[q^(n-k+1), q, k] / qPochhammer[q, q, k].

More precisely, qPochhammer[a, q, k] is

and qBinomial[n, k, q] is

The function qExpand replaces every occurence of a qPochhammer[a, q, k] symbol or a qBinomial[n, k, q] symbol by its definition:

In[10]:= ?qExpand
qExpand[expr_] replaces all occurences of qPochhammer and qBinomial in expr by their definitions as products. See the documentation for qPochhammer and for qBinomial for details.

Hence,

In[11]:= qPochhammer[a, q, 6] // qExpand
Out[11]= 2 3 4 5 (-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )
In[12]:= First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand
Out[12]= 11 2 3 CJ`q (-1 + CJ`q ) (-1 + CJ`q )

Finally,


In[13]:= ?ColoredJones
Type ColoredJones and see for yourself.

[Garoufalidis Le] ^  S. Garoufalidis and T. Q. T. Le, The Colored Jones Function is -Holonomic, Georgia Institute of Technology preprint, September 2003, arXiv:math.GT/0309214.