10 125

From Knot Atlas
Jump to: navigation, search

10 124.gif

10_124

10 126.gif

10_126

Contents

10 125.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 125's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 125 at Knotilus!

10_125 is also known as the pretzel knot P(5,-3,2).


Knot presentations

Planar diagram presentation X1425 X3849 X5,14,6,15 X20,16,1,15 X16,10,17,9 X18,12,19,11 X10,18,11,17 X12,20,13,19 X13,6,14,7 X7283
Gauss code -1, 10, -2, 1, -3, 9, -10, 2, 5, -7, 6, -8, -9, 3, 4, -5, 7, -6, 8, -4
Dowker-Thistlethwaite code 4 8 14 2 -16 -18 6 -20 -10 -12
Conway Notation [5,21,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

10 125 ML.gif 10 125 AP.gif
[{12, 2}, {1, 10}, {8, 11}, {10, 12}, {9, 3}, {2, 8}, {7, 1}, {6, 9}, {5, 7}, {4, 6}, {3, 5}, {11, 4}]

[edit Notes on presentations of 10 125]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-6]
Hyperbolic Volume 4.61196
A-Polynomial See Data:10 125/A-polynomial

[edit Notes for 10 125's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 1
Topological 4 genus 1
Concordance genus 3
Rasmussen s-Invariant 2

[edit Notes for 10 125's four dimensional invariants]

Polynomial invariants

Alexander polynomial t^3-2 t^2+2 t-1+2 t^{-1} -2 t^{-2} + t^{-3}
Conway polynomial z^6+4 z^4+3 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 11, 2 }
Jones polynomial -q^4+q^3-q^2+2 q-1+2 q^{-1} - q^{-2} + q^{-3} - q^{-4}
HOMFLY-PT polynomial (db, data sources) z^6-a^2 z^4-z^4 a^{-2} +6 z^4-4 a^2 z^2-4 z^2 a^{-2} +11 z^2-3 a^2-3 a^{-2} +7
Kauffman polynomial (db, data sources) a^2 z^8+z^8+a^3 z^7+2 a z^7+z^7 a^{-1} -6 a^2 z^6-6 z^6-6 a^3 z^5-11 a z^5-5 z^5 a^{-1} +11 a^2 z^4+2 z^4 a^{-2} +13 z^4+10 a^3 z^3+17 a z^3+8 z^3 a^{-1} +z^3 a^{-3} -8 a^2 z^2-6 z^2 a^{-2} +z^2 a^{-4} -15 z^2-4 a^3 z-8 a z-6 z a^{-1} -z a^{-3} +z a^{-5} +3 a^2+3 a^{-2} +7
The A2 invariant -q^{12}-q^{10}-q^8+q^4+2 q^2+3+2 q^{-2} + q^{-4} - q^{-8} - q^{-10} - q^{-12}
The G2 invariant q^{60}+q^{56}-q^{54}-q^{48}-2 q^{44}-q^{40}-2 q^{38}-q^{36}-q^{34}-2 q^{32}-2 q^{28}-q^{26}+q^{24}-q^{22}+q^{20}+q^{16}+2 q^{14}+q^{12}+2 q^{10}+2 q^8+2 q^6+2 q^4+3 q^2+1+2 q^{-2} +2 q^{-4} + q^{-6} +2 q^{-8} +2 q^{-10} + q^{-14} +2 q^{-16} - q^{-18} + q^{-20} - q^{-24} + q^{-26} - q^{-28} - q^{-30} - q^{-34} - q^{-36} - q^{-38} -2 q^{-40} - q^{-44} - q^{-46} - q^{-50} - q^{-56} + q^{-72}