9 10

From Knot Atlas
Jump to: navigation, search

9 9.gif

9_9

9 11.gif

9_11

Contents

9 10.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 10's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 10 at Knotilus!


Knot presentations

Planar diagram presentation X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X16,8,17,7 X2,12,3,11 X4,16,5,15 X14,6,15,5 X6,14,7,13
Gauss code 1, -6, 2, -7, 8, -9, 5, -1, 3, -4, 6, -2, 9, -8, 7, -5, 4, -3
Dowker-Thistlethwaite code 8 12 14 16 18 2 6 4 10
Conway Notation [333]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 11, width is 4,

Braid index is 4

9 10 ML.gif 9 10 AP.gif
[{3, 11}, {2, 4}, {5, 3}, {4, 10}, {1, 5}, {11, 9}, {10, 6}, {7, 2}, {6, 8}, {9, 7}, {8, 1}]

[edit Notes on presentations of 9 10]


Three dimensional invariants

Symmetry type Reversible
Unknotting number \{2,3\}
3-genus 2
Bridge index 2
Super bridge index \{4,6\}
Nakanishi index 1
Maximal Thurston-Bennequin number [3][-14]
Hyperbolic Volume 8.77346
A-Polynomial See Data:9 10/A-polynomial

[edit Notes for 9 10's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 2
Topological 4 genus 2
Concordance genus 2
Rasmussen s-Invariant -4

[edit Notes for 9 10's four dimensional invariants]

Polynomial invariants

Alexander polynomial 4 t^2-8 t+9-8 t^{-1} +4 t^{-2}
Conway polynomial 4 z^4+8 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 33, 4 }
Jones polynomial -q^{11}+q^{10}-3 q^9+5 q^8-5 q^7+6 q^6-5 q^5+4 q^4-2 q^3+q^2
HOMFLY-PT polynomial (db, data sources) z^4 a^{-4} +2 z^4 a^{-6} +z^4 a^{-8} +2 z^2 a^{-4} +5 z^2 a^{-6} +2 z^2 a^{-8} -z^2 a^{-10} +2 a^{-6} + a^{-8} -2 a^{-10}
Kauffman polynomial (db, data sources) z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +3 z^7 a^{-9} +z^7 a^{-11} +3 z^6 a^{-6} -z^6 a^{-8} -3 z^6 a^{-10} +z^6 a^{-12} +2 z^5 a^{-5} -3 z^5 a^{-7} -7 z^5 a^{-9} -z^5 a^{-11} +z^5 a^{-13} +z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} +9 z^4 a^{-10} -2 z^4 a^{-12} -3 z^3 a^{-5} +3 z^3 a^{-7} +9 z^3 a^{-9} -z^3 a^{-11} -4 z^3 a^{-13} -2 z^2 a^{-4} +7 z^2 a^{-6} -2 z^2 a^{-8} -11 z^2 a^{-10} -4 z a^{-9} +4 z a^{-13} -2 a^{-6} + a^{-8} +2 a^{-10}
The A2 invariant  q^{-6} - q^{-8} + q^{-10} +2 q^{-16} +2 q^{-20} + q^{-22} + q^{-24} + q^{-26} -2 q^{-28} - q^{-30} - q^{-32} - q^{-34}
The G2 invariant  q^{-30} - q^{-32} +2 q^{-34} -3 q^{-36} +2 q^{-38} - q^{-40} -2 q^{-42} +7 q^{-44} -9 q^{-46} +11 q^{-48} -8 q^{-50} +3 q^{-52} +5 q^{-54} -13 q^{-56} +21 q^{-58} -19 q^{-60} +12 q^{-62} -2 q^{-64} -10 q^{-66} +18 q^{-68} -17 q^{-70} +14 q^{-72} -2 q^{-74} -7 q^{-76} +13 q^{-78} -9 q^{-80} - q^{-82} +12 q^{-84} -19 q^{-86} +18 q^{-88} -9 q^{-90} -4 q^{-92} +21 q^{-94} -28 q^{-96} +31 q^{-98} -20 q^{-100} +6 q^{-102} +11 q^{-104} -21 q^{-106} +26 q^{-108} -18 q^{-110} +12 q^{-112} +2 q^{-114} -10 q^{-116} +15 q^{-118} -10 q^{-120} -2 q^{-122} +9 q^{-124} -16 q^{-126} +10 q^{-128} -3 q^{-130} -12 q^{-132} +18 q^{-134} -20 q^{-136} +15 q^{-138} -10 q^{-140} -9 q^{-142} +13 q^{-144} -16 q^{-146} +13 q^{-148} -9 q^{-150} +2 q^{-152} +3 q^{-154} -4 q^{-156} +6 q^{-158} -6 q^{-160} +4 q^{-162} - q^{-164} + q^{-168} -2 q^{-170} +2 q^{-172} + q^{-176}