9 41

From Knot Atlas
Jump to: navigation, search

9 40.gif

9_40

9 42.gif

9_42

Contents

9 41.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 41's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 41 at Knotilus!


Three-fold symmetric decorative knot
Three-fold symmetric decorative knot in circle

Knot presentations

Planar diagram presentation X6271 X12,8,13,7 X14,5,15,6 X10,3,11,4 X2,11,3,12 X4,15,5,16 X8,17,9,18 X16,9,17,10 X18,14,1,13
Gauss code 1, -5, 4, -6, 3, -1, 2, -7, 8, -4, 5, -2, 9, -3, 6, -8, 7, -9
Dowker-Thistlethwaite code 6 10 14 12 16 2 18 4 8
Conway Notation [20:20:20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 12, width is 5,

Braid index is 5

9 41 ML.gif 9 41 AP.gif
[{4, 11}, {3, 8}, {10, 5}, {11, 9}, {7, 4}, {5, 2}, {1, 3}, {8, 6}, {2, 7}, {6, 10}, {9, 1}]

[edit Notes on presentations of 9 41]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 3
Super bridge index 4
Nakanishi index 2
Maximal Thurston-Bennequin number [-7][-4]
Hyperbolic Volume 12.0989
A-Polynomial See Data:9 41/A-polynomial

[edit Notes for 9 41's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus 0
Topological 4 genus 0
Concordance genus 0
Rasmussen s-Invariant 0

[edit Notes for 9 41's four dimensional invariants]

Polynomial invariants

Alexander polynomial 3 t^2-12 t+19-12 t^{-1} +3 t^{-2}
Conway polynomial 3 z^4+1
2nd Alexander ideal (db, data sources) \{7,t+1\}
Determinant and Signature { 49, 0 }
Jones polynomial -q^3+3 q^2-5 q+8-8 q^{-1} +8 q^{-2} -7 q^{-3} +5 q^{-4} -3 q^{-5} + q^{-6}
HOMFLY-PT polynomial (db, data sources) a^6-3 z^2 a^4-3 a^4+2 z^4 a^2+4 z^2 a^2+3 a^2+z^4-z^2 a^{-2}
Kauffman polynomial (db, data sources) 2 a^4 z^8+2 a^2 z^8+3 a^5 z^7+9 a^3 z^7+6 a z^7+a^6 z^6-a^4 z^6+5 a^2 z^6+7 z^6-10 a^5 z^5-26 a^3 z^5-11 a z^5+5 z^5 a^{-1} -3 a^6 z^4-12 a^4 z^4-23 a^2 z^4+3 z^4 a^{-2} -11 z^4+9 a^5 z^3+19 a^3 z^3+6 a z^3-3 z^3 a^{-1} +z^3 a^{-3} +3 a^6 z^2+13 a^4 z^2+17 a^2 z^2-z^2 a^{-2} +6 z^2-2 a^5 z-4 a^3 z-2 a z-a^6-3 a^4-3 a^2
The A2 invariant q^{20}+q^{18}-2 q^{16}-q^{12}-2 q^{10}+2 q^8+2 q^4+q^2+2 q^{-2} -2 q^{-4} + q^{-6} + q^{-8} - q^{-10}
The G2 invariant q^{94}-2 q^{92}+6 q^{90}-10 q^{88}+11 q^{86}-7 q^{84}-7 q^{82}+27 q^{80}-39 q^{78}+44 q^{76}-28 q^{74}-3 q^{72}+40 q^{70}-66 q^{68}+70 q^{66}-45 q^{64}+q^{62}+37 q^{60}-64 q^{58}+54 q^{56}-25 q^{54}-16 q^{52}+42 q^{50}-49 q^{48}+27 q^{46}+7 q^{44}-43 q^{42}+63 q^{40}-60 q^{38}+37 q^{36}+6 q^{34}-46 q^{32}+79 q^{30}-82 q^{28}+64 q^{26}-19 q^{24}-28 q^{22}+65 q^{20}-77 q^{18}+58 q^{16}-17 q^{14}-25 q^{12}+51 q^{10}-48 q^8+18 q^6+19 q^4-46 q^2+51-30 q^{-2} -3 q^{-4} +35 q^{-6} -51 q^{-8} +53 q^{-10} -32 q^{-12} +8 q^{-14} +16 q^{-16} -32 q^{-18} +33 q^{-20} -27 q^{-22} +18 q^{-24} -7 q^{-26} -2 q^{-28} +9 q^{-30} -14 q^{-32} +13 q^{-34} -10 q^{-36} +7 q^{-38} -2 q^{-40} - q^{-42} +2 q^{-44} -4 q^{-46} +3 q^{-48} -2 q^{-50} + q^{-52}