K11a33

From Knot Atlas
Jump to: navigation, search

K11a32.gif

K11a32

K11a34.gif

K11a34

Contents

K11a33.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a33 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,5,15,6 X2837 X16,9,17,10 X18,11,19,12 X20,14,21,13 X6,15,7,16 X10,17,11,18 X22,19,1,20 X12,22,13,21
Gauss code 1, -4, 2, -1, 3, -8, 4, -2, 5, -9, 6, -11, 7, -3, 8, -5, 9, -6, 10, -7, 11, -10
Dowker-Thistlethwaite code 4 8 14 2 16 18 20 6 10 22 12
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a33 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number \{1,2\}
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a33/ThurstonBennequinNumber
Hyperbolic Volume 13.8946
A-Polynomial See Data:K11a33/A-polynomial

[edit Notes for K11a33's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant 2

[edit Notes for K11a33's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+5 t^3-12 t^2+19 t-21+19 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4}
Conway polynomial -z^8-3 z^6-2 z^4+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 95, -2 }
Jones polynomial -q^4+3 q^3-6 q^2+10 q-12+15 q^{-1} -15 q^{-2} +13 q^{-3} -10 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7}
HOMFLY-PT polynomial (db, data sources) -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-14 a^2 z^4-z^4 a^{-2} +9 z^4+5 a^4 z^2-15 a^2 z^2-3 z^2 a^{-2} +13 z^2+2 a^4-6 a^2-2 a^{-2} +7
Kauffman polynomial (db, data sources) a^2 z^{10}+z^{10}+4 a^3 z^9+7 a z^9+3 z^9 a^{-1} +6 a^4 z^8+10 a^2 z^8+3 z^8 a^{-2} +7 z^8+6 a^5 z^7-2 a^3 z^7-16 a z^7-7 z^7 a^{-1} +z^7 a^{-3} +5 a^6 z^6-8 a^4 z^6-37 a^2 z^6-12 z^6 a^{-2} -36 z^6+3 a^7 z^5-6 a^5 z^5-9 a^3 z^5-4 z^5 a^{-1} -4 z^5 a^{-3} +a^8 z^4-5 a^6 z^4+5 a^4 z^4+42 a^2 z^4+15 z^4 a^{-2} +46 z^4-3 a^7 z^3+2 a^5 z^3+10 a^3 z^3+13 a z^3+13 z^3 a^{-1} +5 z^3 a^{-3} -a^8 z^2+2 a^6 z^2-4 a^4 z^2-24 a^2 z^2-8 z^2 a^{-2} -25 z^2+a^7 z-4 a^3 z-6 a z-5 z a^{-1} -2 z a^{-3} +2 a^4+6 a^2+2 a^{-2} +7
The A2 invariant q^{20}-q^{18}+2 q^{16}-q^{14}-q^{12}+q^{10}-4 q^8+2 q^6-2 q^4+2 q^2+3+3 q^{-4} - q^{-6} - q^{-12}
The G2 invariant q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+5 q^{106}-4 q^{104}-2 q^{102}+11 q^{100}-20 q^{98}+28 q^{96}-30 q^{94}+21 q^{92}-4 q^{90}-18 q^{88}+46 q^{86}-64 q^{84}+71 q^{82}-62 q^{80}+34 q^{78}+5 q^{76}-50 q^{74}+94 q^{72}-120 q^{70}+122 q^{68}-91 q^{66}+28 q^{64}+51 q^{62}-120 q^{60}+164 q^{58}-153 q^{56}+91 q^{54}+2 q^{52}-95 q^{50}+142 q^{48}-123 q^{46}+48 q^{44}+53 q^{42}-131 q^{40}+140 q^{38}-78 q^{36}-43 q^{34}+164 q^{32}-242 q^{30}+220 q^{28}-117 q^{26}-45 q^{24}+200 q^{22}-292 q^{20}+287 q^{18}-190 q^{16}+33 q^{14}+123 q^{12}-226 q^{10}+246 q^8-169 q^6+45 q^4+87 q^2-158+157 q^{-2} -71 q^{-4} -46 q^{-6} +152 q^{-8} -189 q^{-10} +143 q^{-12} -26 q^{-14} -108 q^{-16} +214 q^{-18} -235 q^{-20} +177 q^{-22} -63 q^{-24} -68 q^{-26} +158 q^{-28} -189 q^{-30} +156 q^{-32} -82 q^{-34} + q^{-36} +56 q^{-38} -82 q^{-40} +74 q^{-42} -48 q^{-44} +19 q^{-46} +3 q^{-48} -15 q^{-50} +14 q^{-52} -11 q^{-54} +6 q^{-56} -2 q^{-58} + q^{-60}

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_116, K11a7, K11a82,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {K11a82,}

Vassiliev invariants

V2 and V3: (0, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
0 16 0 0 16 0 -\frac{320}{3} -\frac{128}{3} -80 0 128 0 0 448 \frac{64}{3} \frac{656}{3} \frac{272}{3} -16

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=-2 is the signature of K11a33. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
9           1-1
7          2 2
5         41 -3
3        62  4
1       64   -2
-1      96    3
-3     77     0
-5    68      -2
-7   47       3
-9  26        -4
-11 14         3
-13 2          -2
-151           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=-2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=0 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} {\mathbb Z}^{9}
r=1 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a32.gif

K11a32

K11a34.gif

K11a34