K11n27

From Knot Atlas
Jump to: navigation, search

K11n26.gif

K11n26

K11n28.gif

K11n28

Contents

K11n27.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n27 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,13,6,12 X2837 X9,15,10,14 X11,18,12,19 X13,7,14,6 X15,21,16,20 X17,1,18,22 X19,10,20,11 X21,17,22,16
Gauss code 1, -4, 2, -1, -3, 7, 4, -2, -5, 10, -6, 3, -7, 5, -8, 11, -9, 6, -10, 8, -11, 9
Dowker-Thistlethwaite code 4 8 -12 2 -14 -18 -6 -20 -22 -10 -16
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n27 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number 3
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n27/ThurstonBennequinNumber
Hyperbolic Volume 9.33368
A-Polynomial See Data:K11n27/A-polynomial

[edit Notes for K11n27's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 4
Rasmussen s-Invariant -6

[edit Notes for K11n27's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^4+3 t^3-3 t^2+2 t-1+2 t^{-1} -3 t^{-2} +3 t^{-3} - t^{-4}
Conway polynomial -z^8-5 z^6-5 z^4+z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 19, 6 }
Jones polynomial q^9-2 q^8+2 q^7-3 q^6+3 q^5-3 q^4+3 q^3-q^2+q
HOMFLY-PT polynomial (db, data sources) -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -17 z^4 a^{-6} +6 z^4 a^{-8} +11 z^2 a^{-4} -19 z^2 a^{-6} +10 z^2 a^{-8} -z^2 a^{-10} +6 a^{-4} -9 a^{-6} +5 a^{-8} - a^{-10}
Kauffman polynomial (db, data sources) z^9 a^{-5} +z^9 a^{-7} +z^8 a^{-4} +4 z^8 a^{-6} +3 z^8 a^{-8} -5 z^7 a^{-5} -2 z^7 a^{-7} +3 z^7 a^{-9} -7 z^6 a^{-4} -24 z^6 a^{-6} -16 z^6 a^{-8} +z^6 a^{-10} +5 z^5 a^{-5} -10 z^5 a^{-7} -15 z^5 a^{-9} +17 z^4 a^{-4} +45 z^4 a^{-6} +24 z^4 a^{-8} -4 z^4 a^{-10} +4 z^3 a^{-5} +22 z^3 a^{-7} +18 z^3 a^{-9} -17 z^2 a^{-4} -33 z^2 a^{-6} -15 z^2 a^{-8} +z^2 a^{-10} -5 z a^{-5} -10 z a^{-7} -6 z a^{-9} -z a^{-11} +6 a^{-4} +9 a^{-6} +5 a^{-8} + a^{-10}
The A2 invariant  q^{-4} + q^{-6} +2 q^{-8} +2 q^{-10} + q^{-12} -2 q^{-16} - q^{-18} -3 q^{-20} + q^{-26} + q^{-28} + q^{-32} - q^{-34}
The G2 invariant Data:K11n27/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {10_133,}

Vassiliev invariants

V2 and V3: (1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
4 0 8 \frac{110}{3} \frac{130}{3} 0 320 160 160 \frac{32}{3} 0 \frac{440}{3} \frac{520}{3} \frac{44191}{30} \frac{338}{15} \frac{56462}{45} \frac{2081}{18} \frac{2911}{30}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=6 is the signature of K11n27. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456χ
19        11
17       1 -1
15      22 0
13     21  -1
11    121  0
9   22    0
7  11     0
5 13      2
3         0
11        1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5 i=7
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=5 {\mathbb Z}^{2} {\mathbb Z}
r=6 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n26.gif

K11n26

K11n28.gif

K11n28