K11n26

From Knot Atlas
Jump to: navigation, search

K11n25.gif

K11n25

K11n27.gif

K11n27

Contents

K11n26.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n26 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X5,13,6,12 X2837 X14,9,15,10 X18,12,19,11 X13,7,14,6 X20,15,21,16 X22,17,1,18 X10,20,11,19 X16,21,17,22
Gauss code 1, -4, 2, -1, -3, 7, 4, -2, 5, -10, 6, 3, -7, -5, 8, -11, 9, -6, 10, -8, 11, -9
Dowker-Thistlethwaite code 4 8 -12 2 14 18 -6 20 22 10 16
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n26 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n26/ThurstonBennequinNumber
Hyperbolic Volume 11.7289
A-Polynomial See Data:K11n26/A-polynomial

[edit Notes for K11n26's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus 3
Rasmussen s-Invariant 0

[edit Notes for K11n26's four dimensional invariants]

Polynomial invariants

Alexander polynomial -t^3+5 t^2-9 t+11-9 t^{-1} +5 t^{-2} - t^{-3}
Conway polynomial -z^6-z^4+2 z^2+1
2nd Alexander ideal (db, data sources) \{1\}
Determinant and Signature { 41, 0 }
Jones polynomial -q^7+2 q^6-4 q^5+6 q^4-6 q^3+7 q^2-6 q+5-3 q^{-1} + q^{-2}
HOMFLY-PT polynomial (db, data sources) -z^6 a^{-2} -4 z^4 a^{-2} +2 z^4 a^{-4} +z^4-5 z^2 a^{-2} +6 z^2 a^{-4} -z^2 a^{-6} +2 z^2-2 a^{-2} +4 a^{-4} -2 a^{-6} +1
Kauffman polynomial (db, data sources) z^9 a^{-3} +z^9 a^{-5} +3 z^8 a^{-2} +5 z^8 a^{-4} +2 z^8 a^{-6} +3 z^7 a^{-1} +2 z^7 a^{-3} +z^7 a^{-7} -9 z^6 a^{-2} -19 z^6 a^{-4} -9 z^6 a^{-6} +z^6-8 z^5 a^{-1} -16 z^5 a^{-3} -13 z^5 a^{-5} -5 z^5 a^{-7} +9 z^4 a^{-2} +20 z^4 a^{-4} +12 z^4 a^{-6} +z^4+3 a z^3+8 z^3 a^{-1} +16 z^3 a^{-3} +19 z^3 a^{-5} +8 z^3 a^{-7} +a^2 z^2-7 z^2 a^{-2} -11 z^2 a^{-4} -6 z^2 a^{-6} -z^2-a z-3 z a^{-1} -5 z a^{-3} -7 z a^{-5} -4 z a^{-7} +2 a^{-2} +4 a^{-4} +2 a^{-6} +1
The A2 invariant q^6-q^4+q^2- q^{-2} + q^{-4} - q^{-6} +2 q^{-8} + q^{-10} + q^{-12} +2 q^{-14} - q^{-16} - q^{-20} - q^{-22}
The G2 invariant Data:K11n26/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_20, 10_149,}

Same Jones Polynomial (up to mirroring, q\leftrightarrow q^{-1}): {}

Vassiliev invariants

V2 and V3: (2, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
8 32 32 \frac{364}{3} \frac{68}{3} 256 \frac{1568}{3} \frac{224}{3} 96 \frac{256}{3} 512 \frac{2912}{3} \frac{544}{3} \frac{35911}{15} -\frac{1084}{15} \frac{49804}{45} \frac{329}{9} \frac{2071}{15}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s-1, where s=0 is the signature of K11n26. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
15         1-1
13        1 1
11       31 -2
9      31  2
7     33   0
5    43    1
3   23     1
1  34      -1
-1 13       2
-3 2        -2
-51         1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n25.gif

K11n25

K11n27.gif

K11n27