Heegaard Floer Knot Homology: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Manual TOC Sidebar}}
{{Manual TOC Sidebar}}


In 2007, [http://www.math.unizh.ch/user/jdroz/ Jean-Marie Droz] of the University of Zurich (working along with [http://www.math.unizh.ch/index.php?id=1819&no_cache=1&key1=578&no_cache=1 Anna Beliakova]) wrote a Python program to compute the (hat-version) Heegaard-Floer Knot Homology <math>\widehat{\operatorname{HFK}}(K)</math> of a knot <math>K</math>. His program is integrated into <code>KnotTheory`</code>, though to run it, you must have [http://python.org/ Python] as well as the Python library [http://psyco.sourceforge.net/ Psycho] installed on your system.
In 2007, [http://www.math.unizh.ch/user/jdroz/ Jean-Marie Droz] of the University of Zurich (working along with [http://www.math.unizh.ch/index.php?id=1819&no_cache=1&key1=578&no_cache=1 Anna Beliakova]) wrote a Python program to compute the (hat-version) Heegaard-Floer Knot Homology <math>\widehat{\operatorname{HFK}}(K)</math> of a knot <math>K</math> (see {{arXiv|0803.2379}}). His program is integrated into <code>KnotTheory`</code>, though to run it, you must have [http://python.org/ Python] as well as the Python library [http://psyco.sourceforge.net/ Psyco] installed on your system.


{{Startup Note}}
{{Startup Note}}
Line 7: Line 7:
<!--$$?HFKHat$$-->
<!--$$?HFKHat$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|

n = 1 |
n1 = 2 |
in = <nowiki>HFKHat</nowiki> |
out= <nowiki>HFKHat[K][t,m] returns the Poincare polynomial of the Heegaard-Floer Knot Homology (hat version) of the knot K, in the Alexander variable t and the Maslov variable m.</nowiki> |
about= <nowiki>The Heegaard-Floer Knot Homology program was written by Jean-Marie Droz in 2007 at the University of Zurich, based on methods of Anna Beliakova's arXiv:07050669.</nowiki>}}
<!--END-->
<!--END-->

{| align=center
|[[Image:8_19.gif|thumb|180px|<center>[[8_19]]</center>]]
|[[Image:8_19_AP.gif|thumb|none|<center>in [[Arc Presentations|Arc Presentation]]</center>|180px]]
|}


The Heegaard-Floer Knot Homology is a categorification of the [[The Alexander-Conway Polynomial|Alexander polynomial]]. Let us test that for the knot [[8_19]]:
The Heegaard-Floer Knot Homology is a categorification of the [[The Alexander-Conway Polynomial|Alexander polynomial]]. Let us test that for the knot [[8_19]]:
Line 14: Line 24:
<!--$$hfk = HFKHat[K = Knot[8, 19]][t, m]$$-->
<!--$$hfk = HFKHat[K = Knot[8, 19]][t, m]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|

n = 3 |
in = <nowiki>hfk = HFKHat[K = Knot[8, 19]][t, m]</nowiki> |
out= <nowiki> 2 -3 m 5 2 6 3
m + t + -- + m t + m t
2
t</nowiki>}}
<!--END-->
<!--END-->


<!--$${hfk /. m -> -1, Alexander[K][t]}$$-->
<!--$${hfk /. m -> -1, Alexander[K][t]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|

n = 4 |
in = <nowiki>{hfk /. m -> -1, Alexander[K][t]}</nowiki> |
out= <nowiki> -3 -2 2 3 -3 -2 2 3
{1 + t - t - t + t , 1 + t - t - t + t }</nowiki>}}
<!--END-->
<!--END-->


Line 26: Line 46:
<!--$$Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]$$-->
<!--$$Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|

n = 5 |
in = <nowiki>Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]</nowiki> |
out= <nowiki>{Knot[8, 19]}</nowiki>}}
<!--END-->
<!--END-->


<!--$$hfk /. m -> 1/t$$-->
<!--$$hfk /. m -> 1/t$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 6 |
in = <nowiki>hfk /. m -> 1/t</nowiki> |
out= <nowiki>4 -2
-- + t
3
t</nowiki>}}
<!--END-->


{{Knot Image Pair|K11n34|gif|K11n42|gif}}

The (mirrored) Conway knot [[K11n34]] and the (mirrored) Kinoshita-Terasaka knot [[K11n42]] are a mutant pair, and are notoriously difficult to tell apart. Let us check that an array of standard knot polynomials fails to separate them, yet <math>\widehat{\operatorname{HFK}}</math> succeeds:

<!--$$K1 = Knot["K11n34"]; K2 = Knot["K11n42"];
test[invt_] := (invt[K1] =!= invt[K2]);
test /@ {
Alexander, MultivariableAlexander, Jones, HOMFLYPT, Kauffman, Kh, HFKHat
}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 7 |
in = <nowiki>K1 = Knot["K11n34"]; K2 = Knot["K11n42"];
test[invt_] := (invt[K1] =!= invt[K2]);
test /@ {
Alexander, MultivariableAlexander, Jones, HOMFLYPT, Kauffman, Kh, HFKHat
}</nowiki> |
out= <nowiki>{False, False, False, False, False, False, True}</nowiki>}}
<!--END-->
<!--END-->

Indeed,

<!--$${HFKHat[K1][t, m], HFKHat[K2][t, m]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 8 |
in = <nowiki>{HFKHat[K1][t, m], HFKHat[K2][t, m]}</nowiki> |
out= <nowiki> 2 1 1 3 3 3 3
{3 + - + ----- + ----- + ----- + ----- + ---- + --- + 3 t + 3 m t +
m 4 3 3 3 3 2 2 2 2 m t
m t m t m t m t m t
2 2 2 2 3 3 3
3 m t + 3 m t + m t + m t ,
6 1 1 4 4 2 2 2
7 + - + ----- + ----- + ---- + --- + 4 t + 4 m t + m t + m t }
m 3 2 2 2 2 m t
m t m t m t</nowiki>}}
<!--END-->

On July 6, 2006, [[User:AnonMoos]] [[User_talk:Drorbn#Here.27s_one|asked]] [[User:Drorbn]] if he could identify the knot in the left hand side picture below. At the time it was impossible using the tools available with <code>KnotTheory`</code> - using any of many invariants, the answer can be found to be either the mirror of [[K11n34]] or the mirror of [[K11n42]], but <code>KnotTheory`</code> couldn't tell which one it is (though of course, it is possible to do it "by hand"). The 2007 addition <math>\widehat{\operatorname{HFK}}</math> does the job, though. Indeed, we first extract the mystery knot's [[DT (Dowker-Thistlethwaite) Codes|DT (Dowker-Thistlethwaite) Code]] using the picture on the right hand side below, then compute <math>\widehat{\operatorname{HFK}}</math>, and then search for it within the <math>\widehat{\operatorname{HFK}}</math>'s of all knots with up to 11 crossings:

{| align=center width=80%
|align=center|[[Image:Gateknot.jpg|240px]]
|align=center|[[Image:Gateknot DT Labeled.png|252px]]
|}

<!--$$K3 = DTCode[6, 8, 14, 12, 4, -18, 2, -20, -22, -10, -16];$$-->
<!--Robot Land, no human edits to "END"-->
{{In|
n = 9 |
in = <nowiki>K3 = DTCode[6, 8, 14, 12, 4, -18, 2, -20, -22, -10, -16];</nowiki>}}
<!--END-->
<!--$HFKHat[Mirror[K3]] = Function @@ {3 + 2/m + 1/(m^4 t^3) + 1/(m^3 t^3) + 3/(m^3 t^2) + 3/(m^2 t^2) + 3/(m^2 t) + 3/(m t) + 3 t + 3 m t + 3 m t^2 + 3 m^2 t^2 + m^2 t^3 + m^3 t^3 /. {t -> #1, m -> #2}};$--><!--END-->
<!--$$H = HFKHat[Mirror[K3]][t, m]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 10 |
in = <nowiki>H = HFKHat[Mirror[K3]][t, m]</nowiki> |
out= <nowiki> 2 1 1 3 3 3 3
3 + - + ----- + ----- + ----- + ----- + ---- + --- + 3 t + 3 m t +
m 4 3 3 3 3 2 2 2 2 m t
m t m t m t m t m t
2 2 2 2 3 3 3
3 m t + 3 m t + m t + m t</nowiki>}}
<!--END-->

<!--$$Select[AllKnots[], HFKHat[#][t, m] == H &]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 11 |
in = <nowiki>Select[AllKnots[], HFKHat[#][t, m] == H &]</nowiki> |
out= <nowiki>{Knot[11, NonAlternating, 34]}</nowiki>}}
<!--END-->

And so the mystery knot is the Conway knot, the mirror of [[K11n34]].

Latest revision as of 10:40, 20 March 2008


In 2007, Jean-Marie Droz of the University of Zurich (working along with Anna Beliakova) wrote a Python program to compute the (hat-version) Heegaard-Floer Knot Homology [math]\displaystyle{ \widehat{\operatorname{HFK}}(K) }[/math] of a knot [math]\displaystyle{ K }[/math] (see arXiv:0803.2379). His program is integrated into KnotTheory`, though to run it, you must have Python as well as the Python library Psyco installed on your system.

(For In[1] see Setup)

In[1]:= ?HFKHat
HFKHat[K][t,m] returns the Poincare polynomial of the Heegaard-Floer Knot Homology (hat version) of the knot K, in the Alexander variable t and the Maslov variable m.
In[2]:= HFKHat::about
The Heegaard-Floer Knot Homology program was written by Jean-Marie Droz in 2007 at the University of Zurich, based on methods of Anna Beliakova's arXiv:07050669.

The Heegaard-Floer Knot Homology is a categorification of the Alexander polynomial. Let us test that for the knot 8_19:

In[3]:= hfk = HFKHat[K = Knot[8, 19]][t, m]
Out[3]= 2 -3 m 5 2 6 3 m + t + -- + m t + m t 2 t
In[4]:= {hfk /. m -> -1, Alexander[K][t]}
Out[4]= -3 -2 2 3 -3 -2 2 3 {1 + t - t - t + t , 1 + t - t - t + t }

The knot 8_19 is the first knot in the Rolfsen Knot Table whose Heegaard-Floer Knot Homology is not "diagonal". Let us test that. The homology [math]\displaystyle{ \widehat{\operatorname{HFK}}(K) }[/math] is "on diagonal", iff its Poincare polynomial, evaluated at [math]\displaystyle{ m=1/t }[/math], is a monomial:

In[5]:= Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]
Out[5]= {Knot[8, 19]}
In[6]:= hfk /. m -> 1/t
Out[6]= 4 -2 -- + t 3 t
K11n34.gif
K11n34
K11n42.gif
K11n42

The (mirrored) Conway knot K11n34 and the (mirrored) Kinoshita-Terasaka knot K11n42 are a mutant pair, and are notoriously difficult to tell apart. Let us check that an array of standard knot polynomials fails to separate them, yet [math]\displaystyle{ \widehat{\operatorname{HFK}} }[/math] succeeds:

In[7]:= K1 = Knot["K11n34"]; K2 = Knot["K11n42"]; test[invt_] := (invt[K1] =!= invt[K2]); test /@ { Alexander, MultivariableAlexander, Jones, HOMFLYPT, Kauffman, Kh, HFKHat }
Out[7]= {False, False, False, False, False, False, True}

Indeed,

In[8]:= {HFKHat[K1][t, m], HFKHat[K2][t, m]}
Out[8]= 2 1 1 3 3 3 3 {3 + - + ----- + ----- + ----- + ----- + ---- + --- + 3 t + 3 m t + m 4 3 3 3 3 2 2 2 2 m t m t m t m t m t m t 2 2 2 2 3 3 3 3 m t + 3 m t + m t + m t , 6 1 1 4 4 2 2 2 7 + - + ----- + ----- + ---- + --- + 4 t + 4 m t + m t + m t } m 3 2 2 2 2 m t m t m t m t

On July 6, 2006, User:AnonMoos asked User:Drorbn if he could identify the knot in the left hand side picture below. At the time it was impossible using the tools available with KnotTheory` - using any of many invariants, the answer can be found to be either the mirror of K11n34 or the mirror of K11n42, but KnotTheory` couldn't tell which one it is (though of course, it is possible to do it "by hand"). The 2007 addition [math]\displaystyle{ \widehat{\operatorname{HFK}} }[/math] does the job, though. Indeed, we first extract the mystery knot's DT (Dowker-Thistlethwaite) Code using the picture on the right hand side below, then compute [math]\displaystyle{ \widehat{\operatorname{HFK}} }[/math], and then search for it within the [math]\displaystyle{ \widehat{\operatorname{HFK}} }[/math]'s of all knots with up to 11 crossings:

Gateknot.jpg Gateknot DT Labeled.png
In[9]:= K3 = DTCode[6, 8, 14, 12, 4, -18, 2, -20, -22, -10, -16];
In[10]:= H = HFKHat[Mirror[K3]][t, m]
Out[10]= 2 1 1 3 3 3 3 3 + - + ----- + ----- + ----- + ----- + ---- + --- + 3 t + 3 m t + m 4 3 3 3 3 2 2 2 2 m t m t m t m t m t m t 2 2 2 2 3 3 3 3 m t + 3 m t + m t + m t
In[11]:= Select[AllKnots[], HFKHat[#][t, m] == H &]
Out[11]= {Knot[11, NonAlternating, 34]}

And so the mystery knot is the Conway knot, the mirror of K11n34.