L10n107: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
m (Reverted edits by GetpaStroc (Talk); changed back to last version by DrorsRobot)
No edit summary
Line 1: Line 1:
http://www.textoudellilatr.com
<!-- WARNING! WARNING! WARNING!
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!

Revision as of 04:50, 22 May 2009

http://www.textoudellilatr.com

L10n106.gif

L10n106

L10n108.gif

L10n108

L10n107.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n107 at Knotilus!

L10n107 is the "Borromean chain mail" link - it contains two L6a4 configurations without any L2a1 configuration (i.e. no two loops are linked).

Compare L10a169.

An indefinitely extended "Borromean chainmail" pattern made up of overlapping L10n107 links; no two circles are directly linked.
"Borromean chain-mail" represented with circles
Represented with minimally-overlapping same-size circles


Link Presentations

[edit Notes on L10n107's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X8493 X2,16,3,15 X16,7,17,8 X9,11,10,14 X13,15,14,20 X19,5,20,10 X11,18,12,19 X4,17,1,18
Gauss code {1, -4, 3, -10}, {-9, 2, -7, 6}, {-2, -1, 5, -3, -6, 8}, {4, -5, 10, 9, -8, 7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L10n107 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-1012345χ
10          1-1
8         1 1
6       111 1
4       21  1
2     521   4
0    282    4
-2   125     4
-4  12       1
-6 111       1
-8 1         1
-101          -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n106.gif

L10n106

L10n108.gif

L10n108