9 3: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-8,5,-9,6,-1,3,-4,7,-2,8,-5,9,-6,4,-3/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-8,5,-9,6,-1,3,-4,7,-2,8,-5,9,-6,4,-3/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 123: Line 115:
q t + 2 q t + 2 q t + q t + 2 q t + q t + q t</nowiki></pre></td></tr>
q t + 2 q t + 2 q t + q t + 2 q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:08, 28 August 2005

9 2.gif

9_2

9 4.gif

9_4

9 3.gif Visit 9 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 3's page at Knotilus!

Visit 9 3's page at the original Knot Atlas!

9 3 Quick Notes


9 3 Further Notes and Views

Knot presentations

Planar diagram presentation X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X14,6,15,5 X16,8,17,7 X2,12,3,11 X4,14,5,13 X6,16,7,15
Gauss code 1, -7, 2, -8, 5, -9, 6, -1, 3, -4, 7, -2, 8, -5, 9, -6, 4, -3
Dowker-Thistlethwaite code 8 12 14 16 18 2 4 6 10
Conway Notation [63]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [5][-16]
Hyperbolic Volume 4.99486
A-Polynomial See Data:9 3/A-polynomial

[edit Notes for 9 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 19, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (9, 26)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 9 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
25         1-1
23          0
21       21 -1
19      1   1
17     22   0
15    11    0
13   12     1
11  11      0
9  1       1
711        0
51         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 3]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 3]]
Out[3]=  
PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17], 
 X[14, 6, 15, 5], X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 14, 5, 13], 

X[6, 16, 7, 15]]
In[4]:=
GaussCode[Knot[9, 3]]
Out[4]=  
GaussCode[1, -7, 2, -8, 5, -9, 6, -1, 3, -4, 7, -2, 8, -5, 9, -6, 4, -3]
In[5]:=
BR[Knot[9, 3]]
Out[5]=  
BR[3, {1, 1, 1, 1, 1, 1, 1, 2, -1, 2}]
In[6]:=
alex = Alexander[Knot[9, 3]][t]
Out[6]=  
     2    3    3            2      3

-3 + -- - -- + - + 3 t - 3 t + 2 t

     3    2   t
t t
In[7]:=
Conway[Knot[9, 3]][z]
Out[7]=  
       2      4      6
1 + 9 z  + 9 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 3]}
In[9]:=
{KnotDet[Knot[9, 3]], KnotSignature[Knot[9, 3]]}
Out[9]=  
{19, 6}
In[10]:=
J=Jones[Knot[9, 3]][q]
Out[10]=  
 3    4      5      6      7      8      9      10    11    12
q  - q  + 2 q  - 2 q  + 3 q  - 3 q  + 3 q  - 2 q   + q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 3]}
In[12]:=
A2Invariant[Knot[9, 3]][q]
Out[12]=  
 10    14    18    20    22      24    30    32    34    36
q   + q   + q   + q   + q   + 2 q   - q   - q   - q   - q
In[13]:=
Kauffman[Knot[9, 3]][a, z]
Out[13]=  
                                          2       2       2      2
3    3     -6   2 z    z     z    4 z   z     3 z    11 z    9 z

--- + -- - a - --- + --- - --- - --- - --- + ---- - ----- - ---- +

10    8          15    13    11    9     14    12      10      8

a a a a a a a a a a

    2    3     3       3      3      3    4       4       4      4
 6 z    z     z     4 z    9 z    3 z    z     2 z    11 z    9 z
 ---- + --- - --- + ---- + ---- + ---- + --- - ---- + ----- + ---- - 
   6     15    13    11      9      7     14    12      10      8
  a     a     a     a       a      a     a     a       a       a

    4    5       5      5      5    6       6      6    6    7
 5 z    z     3 z    8 z    4 z    z     5 z    5 z    z    z
 ---- + --- - ---- - ---- - ---- + --- - ---- - ---- + -- + --- + 
   6     13    11      9      7     12    10      8     6    11
  a     a     a       a      a     a     a       a     a    a

    7    7    8     8
 2 z    z    z     z
 ---- + -- + --- + --
   9     7    10    8
a a a a
In[14]:=
{Vassiliev[2][Knot[9, 3]], Vassiliev[3][Knot[9, 3]]}
Out[14]=  
{0, 26}
In[15]:=
Kh[Knot[9, 3]][q, t]
Out[15]=  
 5    7    7      9  2    11  2    11  3    13  3      13  4    15  4

q + q + q t + q t + q t + q t + q t + 2 q t + q t +

  15  5      17  5      17  6    19  6      21  7    21  8    25  9
q t + 2 q t + 2 q t + q t + 2 q t + q t + q t