9 4: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=4|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,9,-7,1,-3,6,-4,5,-8,2,-9,7,-5,4,-6,3/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=4|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,9,-7,1,-3,6,-4,5,-8,2,-9,7,-5,4,-6,3/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-21</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-21</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 126: Line 118:
q t q t q t q t q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t q t q t q t q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:12, 28 August 2005

9 3.gif

9_3

9 5.gif

9_5

9 4.gif Visit 9 4's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 4's page at Knotilus!

Visit 9 4's page at the original Knot Atlas!

9 4 Quick Notes


9 4 Further Notes and Views

Knot presentations

Planar diagram presentation X1627 X3,12,4,13 X7,18,8,1 X9,16,10,17 X15,10,16,11 X17,8,18,9 X5,14,6,15 X11,2,12,3 X13,4,14,5
Gauss code -1, 8, -2, 9, -7, 1, -3, 6, -4, 5, -8, 2, -9, 7, -5, 4, -6, 3
Dowker-Thistlethwaite code 6 12 14 18 16 2 4 10 8
Conway Notation [54]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 5.55652
A-Polynomial See Data:9 4/A-polynomial

[edit Notes for 9 4's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 4's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 21, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (7, -19)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 4. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        110
-7       1  1
-9      21  -1
-11     21   1
-13    12    1
-15   22     0
-17   1      1
-19 12       -1
-21          0
-231         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 4]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 4]]
Out[3]=  
PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[7, 18, 8, 1], X[9, 16, 10, 17], 
 X[15, 10, 16, 11], X[17, 8, 18, 9], X[5, 14, 6, 15], X[11, 2, 12, 3], 

X[13, 4, 14, 5]]
In[4]:=
GaussCode[Knot[9, 4]]
Out[4]=  
GaussCode[-1, 8, -2, 9, -7, 1, -3, 6, -4, 5, -8, 2, -9, 7, -5, 4, -6, 3]
In[5]:=
BR[Knot[9, 4]]
Out[5]=  
BR[4, {-1, -1, -1, -1, -1, -2, 1, -2, -3, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 4]][t]
Out[6]=  
    3    5            2

5 + -- - - - 5 t + 3 t

    2   t
t
In[7]:=
Conway[Knot[9, 4]][z]
Out[7]=  
       2      4
1 + 7 z  + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 4]}
In[9]:=
{KnotDet[Knot[9, 4]], KnotSignature[Knot[9, 4]]}
Out[9]=  
{21, -4}
In[10]:=
J=Jones[Knot[9, 4]][q]
Out[10]=  
  -11    -10   2    3    3    4    3    2     -3    -2

-q + q - -- + -- - -- + -- - -- + -- - q + q

               9    8    7    6    5    4
q q q q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 4]}
In[12]:=
A2Invariant[Knot[9, 4]][q]
Out[12]=  
  -34    -32    -30    -28    -26    -24    -22    -20    -16    -10

-q - q - q - q + q + q + q + q + q + q +

  -6
q
In[13]:=
Kauffman[Knot[9, 4]][a, z]
Out[13]=  
 4      8      10      9      11        13        4  2    6  2

a + 2 a + 2 a - 4 a z - a z + 3 a z - 3 a z + a z -

    8  2       10  2    12  2      5  3      7  3       9  3
 7 a  z  - 10 a   z  + a   z  - 2 a  z  + 4 a  z  + 12 a  z  + 

    11  3      13  3    4  4      6  4       8  4       10  4
 2 a   z  - 4 a   z  + a  z  - 2 a  z  + 11 a  z  + 11 a   z  - 

    12  4    5  5      7  5      9  5      11  5    13  5    6  6
 3 a   z  + a  z  - 3 a  z  - 8 a  z  - 3 a   z  + a   z  + a  z  - 

    8  6      10  6    12  6    7  7      9  7    11  7    8  8
 5 a  z  - 5 a   z  + a   z  + a  z  + 2 a  z  + a   z  + a  z  + 

  10  8
a z
In[14]:=
{Vassiliev[2][Knot[9, 4]], Vassiliev[3][Knot[9, 4]]}
Out[14]=  
{0, -19}
In[15]:=
Kh[Knot[9, 4]][q, t]
Out[15]=  
 -5    -3     1        1        2        1        2        2

q + q + ------ + ------ + ------ + ------ + ------ + ------ +

            23  9    19  8    19  7    17  6    15  6    15  5
           q   t    q   t    q   t    q   t    q   t    q   t

   1        2        2        1        2       1       1      1
 ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----
  13  5    13  4    11  4    11  3    9  3    9  2    7  2    5
q t q t q t q t q t q t q t q t