9 34: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=34|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-7,6,-1,2,-3,5,-6,8,-9,7,-5,4,-2,9,-8/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=34|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-7,6,-1,2,-3,5,-6,8,-9,7,-5,4,-2,9,-8/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 138: Line 130:
q t</nowiki></pre></td></tr>
q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:16, 28 August 2005

9 33.gif

9_33

9 35.gif

9_35

9 34.gif Visit 9 34's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 34's page at Knotilus!

Visit 9 34's page at the original Knot Atlas!

9 34 Quick Notes


9 34 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X16,8,17,7 X8394 X2,15,3,16 X14,9,15,10 X10,6,11,5 X4,14,5,13 X18,11,1,12 X12,17,13,18
Gauss code 1, -4, 3, -7, 6, -1, 2, -3, 5, -6, 8, -9, 7, -5, 4, -2, 9, -8
Dowker-Thistlethwaite code 6 8 10 16 14 18 4 2 12
Conway Notation [8*20]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 14.3446
A-Polynomial See Data:9 34/A-polynomial

[edit Notes for 9 34's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 34's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 69, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 34. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        3 -3
5       51 4
3      53  -2
1     75   2
-1    66    0
-3   46     -2
-5  36      3
-7 14       -3
-9 3        3
-111         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 34]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 34]]
Out[3]=  
PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[8, 3, 9, 4], X[2, 15, 3, 16], 
 X[14, 9, 15, 10], X[10, 6, 11, 5], X[4, 14, 5, 13], X[18, 11, 1, 12], 

X[12, 17, 13, 18]]
In[4]:=
GaussCode[Knot[9, 34]]
Out[4]=  
GaussCode[1, -4, 3, -7, 6, -1, 2, -3, 5, -6, 8, -9, 7, -5, 4, -2, 9, -8]
In[5]:=
BR[Knot[9, 34]]
Out[5]=  
BR[4, {-1, 2, -1, 2, -3, 2, -1, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 34]][t]
Out[6]=  
      -3   6    16             2    3

23 - t + -- - -- - 16 t + 6 t - t

           2   t
t
In[7]:=
Conway[Knot[9, 34]][z]
Out[7]=  
     2    6
1 - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 34], Knot[11, NonAlternating, 32], 
  Knot[11, NonAlternating, 119]}
In[9]:=
{KnotDet[Knot[9, 34]], KnotSignature[Knot[9, 34]]}
Out[9]=  
{69, 0}
In[10]:=
J=Jones[Knot[9, 34]][q]
Out[10]=  
      -5   4    7    10   12             2      3    4

12 - q + -- - -- + -- - -- - 10 q + 8 q - 4 q + q

           4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 34]}
In[12]:=
A2Invariant[Knot[9, 34]][q]
Out[12]=  
      -16    -14    2     2    2     -6    -4   2       2      4    6

-2 - q + q + --- - --- + -- - q - q + -- + 3 q - 2 q + q +

                   12    10    8                2
                  q     q     q                q

    8      10    12
2 q - 2 q + q
In[13]:=
Kauffman[Knot[9, 34]][a, z]
Out[13]=  
                                     2                           3
     -2    2   z             2   4 z        2  2      4  2   2 z

-1 - a - a - - - a z + 11 z + ---- + 10 a z + 3 a z - ---- +

               a                   2                           3
                                  a                           a

    3                                        4       4
 4 z          3      3  3    5  3       4   z    10 z        2  4
 ---- + 12 a z  + 5 a  z  - a  z  - 23 z  + -- - ----- - 19 a  z  - 
  a                                          4     2
                                            a     a

              5       5                                          6
    4  4   4 z    10 z          5       3  5    5  5      6   8 z
 7 a  z  + ---- - ----- - 26 a z  - 11 a  z  + a  z  + 9 z  + ---- + 
             3      a                                           2
            a                                                  a

                        7
    2  6      4  6   8 z          7      3  7      8      2  8
 5 a  z  + 4 a  z  + ---- + 14 a z  + 6 a  z  + 3 z  + 3 a  z
a
In[14]:=
{Vassiliev[2][Knot[9, 34]], Vassiliev[3][Knot[9, 34]]}
Out[14]=  
{0, 0}
In[15]:=
Kh[Knot[9, 34]][q, t]
Out[15]=  
6           1        3       1       4       3       6       4

- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  6      6               3        3  2      5  2    5  3      7  3
 ---- + --- + 5 q t + 5 q  t + 3 q  t  + 5 q  t  + q  t  + 3 q  t  + 
  3     q t
 q  t

  9  4
q t