9 3: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 41: | Line 71: | ||
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{33}-q^{32}+2 q^{30}-2 q^{29}-q^{28}+3 q^{27}-4 q^{26}+5 q^{24}-6 q^{23}+q^{22}+5 q^{21}-6 q^{20}+6 q^{18}-5 q^{17}-q^{16}+6 q^{15}-4 q^{14}-2 q^{13}+5 q^{12}-2 q^{11}-2 q^{10}+3 q^9-q^7+q^6</math>|J3=<math>-q^{63}+q^{62}-2 q^{59}+2 q^{58}+q^{57}+q^{56}-4 q^{55}+q^{54}+3 q^{53}+2 q^{52}-5 q^{51}-q^{50}+3 q^{49}+3 q^{48}-3 q^{47}-4 q^{46}+3 q^{45}+2 q^{44}-4 q^{42}+q^{41}+2 q^{40}-3 q^{38}+2 q^{37}+q^{36}-2 q^{35}-2 q^{34}+4 q^{33}-q^{32}-3 q^{31}+6 q^{29}-3 q^{28}-4 q^{27}+q^{26}+7 q^{25}-3 q^{24}-5 q^{23}+7 q^{21}-q^{20}-4 q^{19}-2 q^{18}+5 q^{17}+q^{16}-2 q^{15}-2 q^{14}+2 q^{13}+q^{12}-q^{10}+q^9</math>|J4=<math>q^{102}-q^{101}+2 q^{97}-3 q^{96}+5 q^{92}-5 q^{91}-q^{90}-2 q^{89}+q^{88}+10 q^{87}-6 q^{86}-2 q^{85}-7 q^{84}+2 q^{83}+17 q^{82}-5 q^{81}-4 q^{80}-14 q^{79}-q^{78}+26 q^{77}-q^{76}-4 q^{75}-23 q^{74}-5 q^{73}+32 q^{72}+3 q^{71}-q^{70}-27 q^{69}-9 q^{68}+31 q^{67}+5 q^{66}+q^{65}-27 q^{64}-9 q^{63}+30 q^{62}+3 q^{61}+q^{60}-24 q^{59}-9 q^{58}+29 q^{57}+q^{56}+q^{55}-20 q^{54}-9 q^{53}+26 q^{52}-2 q^{51}+2 q^{50}-14 q^{49}-8 q^{48}+21 q^{47}-5 q^{46}+2 q^{45}-8 q^{44}-6 q^{43}+17 q^{42}-8 q^{41}+q^{40}-4 q^{39}-3 q^{38}+15 q^{37}-8 q^{36}-q^{35}-4 q^{34}-2 q^{33}+14 q^{32}-5 q^{31}-q^{30}-5 q^{29}-4 q^{28}+11 q^{27}-q^{26}+q^{25}-4 q^{24}-5 q^{23}+6 q^{22}+2 q^{20}-q^{19}-3 q^{18}+2 q^{17}+q^{15}-q^{13}+q^{12}</math>|J5=<math>-q^{150}+q^{149}-q^{144}+2 q^{143}-q^{141}-2 q^{138}+4 q^{137}+q^{136}-2 q^{135}-2 q^{133}-4 q^{132}+5 q^{131}+4 q^{130}-q^{129}-5 q^{127}-6 q^{126}+4 q^{125}+9 q^{124}+2 q^{123}-q^{122}-11 q^{121}-9 q^{120}+6 q^{119}+16 q^{118}+7 q^{117}-4 q^{116}-22 q^{115}-14 q^{114}+9 q^{113}+29 q^{112}+17 q^{111}-10 q^{110}-34 q^{109}-24 q^{108}+10 q^{107}+40 q^{106}+31 q^{105}-12 q^{104}-42 q^{103}-31 q^{102}+6 q^{101}+43 q^{100}+38 q^{99}-8 q^{98}-44 q^{97}-33 q^{96}+4 q^{95}+41 q^{94}+38 q^{93}-7 q^{92}-42 q^{91}-32 q^{90}+4 q^{89}+39 q^{88}+35 q^{87}-6 q^{86}-37 q^{85}-32 q^{84}+2 q^{83}+35 q^{82}+34 q^{81}-2 q^{80}-32 q^{79}-31 q^{78}-4 q^{77}+28 q^{76}+34 q^{75}+2 q^{74}-24 q^{73}-28 q^{72}-10 q^{71}+20 q^{70}+31 q^{69}+7 q^{68}-16 q^{67}-22 q^{66}-13 q^{65}+10 q^{64}+24 q^{63}+8 q^{62}-8 q^{61}-14 q^{60}-11 q^{59}+4 q^{58}+15 q^{57}+4 q^{56}-3 q^{55}-7 q^{54}-7 q^{53}+3 q^{52}+10 q^{51}-3 q^{49}-5 q^{48}-4 q^{47}+3 q^{46}+10 q^{45}+q^{44}-3 q^{43}-6 q^{42}-5 q^{41}+9 q^{39}+4 q^{38}+q^{37}-4 q^{36}-7 q^{35}-3 q^{34}+5 q^{33}+3 q^{32}+4 q^{31}-4 q^{29}-4 q^{28}+2 q^{27}+2 q^{25}+2 q^{24}-q^{23}-2 q^{22}+q^{21}+q^{18}-q^{16}+q^{15}</math>|J6=<math>q^{207}-q^{206}-q^{201}+2 q^{200}-2 q^{199}+q^{198}+q^{195}-3 q^{194}+3 q^{193}-4 q^{192}+2 q^{191}+q^{190}+3 q^{188}-3 q^{187}+4 q^{186}-8 q^{185}+2 q^{184}-q^{183}+6 q^{181}+7 q^{179}-12 q^{178}+2 q^{177}-6 q^{176}-3 q^{175}+8 q^{174}+4 q^{173}+13 q^{172}-15 q^{171}+5 q^{170}-12 q^{169}-7 q^{168}+8 q^{167}+5 q^{166}+16 q^{165}-18 q^{164}+11 q^{163}-11 q^{162}-4 q^{161}+8 q^{160}-2 q^{159}+9 q^{158}-29 q^{157}+17 q^{156}+10 q^{154}+17 q^{153}-9 q^{152}-9 q^{151}-51 q^{150}+18 q^{149}+9 q^{148}+30 q^{147}+34 q^{146}-6 q^{145}-22 q^{144}-73 q^{143}+11 q^{142}+8 q^{141}+39 q^{140}+49 q^{139}+3 q^{138}-25 q^{137}-81 q^{136}+5 q^{135}+3 q^{134}+38 q^{133}+53 q^{132}+8 q^{131}-24 q^{130}-79 q^{129}+5 q^{128}+2 q^{127}+35 q^{126}+50 q^{125}+8 q^{124}-21 q^{123}-76 q^{122}+5 q^{121}+q^{120}+33 q^{119}+46 q^{118}+8 q^{117}-13 q^{116}-72 q^{115}+q^{114}-5 q^{113}+27 q^{112}+44 q^{111}+14 q^{110}+q^{109}-66 q^{108}-8 q^{107}-15 q^{106}+18 q^{105}+42 q^{104}+23 q^{103}+17 q^{102}-57 q^{101}-18 q^{100}-28 q^{99}+6 q^{98}+38 q^{97}+32 q^{96}+34 q^{95}-44 q^{94}-22 q^{93}-39 q^{92}-8 q^{91}+28 q^{90}+33 q^{89}+47 q^{88}-27 q^{87}-17 q^{86}-40 q^{85}-19 q^{84}+12 q^{83}+24 q^{82}+49 q^{81}-12 q^{80}-5 q^{79}-30 q^{78}-20 q^{77}-2 q^{76}+9 q^{75}+40 q^{74}-7 q^{73}+5 q^{72}-16 q^{71}-12 q^{70}-7 q^{69}-q^{68}+29 q^{67}-9 q^{66}+5 q^{65}-8 q^{64}-4 q^{63}-6 q^{62}-2 q^{61}+24 q^{60}-9 q^{59}+3 q^{58}-7 q^{57}-3 q^{56}-8 q^{55}-2 q^{54}+22 q^{53}-4 q^{52}+5 q^{51}-4 q^{50}-3 q^{49}-12 q^{48}-6 q^{47}+15 q^{46}-q^{45}+8 q^{44}+q^{43}+q^{42}-10 q^{41}-8 q^{40}+7 q^{39}-3 q^{38}+5 q^{37}+3 q^{36}+4 q^{35}-4 q^{34}-5 q^{33}+3 q^{32}-3 q^{31}+q^{30}+q^{29}+3 q^{28}-q^{27}-2 q^{26}+2 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 48: | Line 81: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17], |
|||
X[14, 6, 15, 5], X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 14, 5, 13], |
X[14, 6, 15, 5], X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 14, 5, 13], |
||
X[6, 16, 7, 15]]</nowiki></pre></td></tr> |
X[6, 16, 7, 15]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -7, 2, -8, 5, -9, 6, -1, 3, -4, 7, -2, 8, -5, 9, -6, 4, -3]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[8, 12, 14, 16, 18, 2, 4, 6, 10]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 1, 1, 1, 2, -1, 2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 1, 1, 1, 2, -1, 2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 3]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 3]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_3_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 3]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 3]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 3 2 3 |
|||
-3 + -- - -- + - + 3 t - 3 t + 2 t |
-3 + -- - -- + - + 3 t - 3 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 3]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 3]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 9 z + 9 z + 2 z</nowiki></pre></td></tr> |
1 + 9 z + 9 z + 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 3]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, 6}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 3]], KnotSignature[Knot[9, 3]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, 6}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 3]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4 5 6 7 8 9 10 11 12 |
|||
q - q + 2 q - 2 q + 3 q - 3 q + 3 q - 2 q + q - q</nowiki></pre></td></tr> |
q - q + 2 q - 2 q + 3 q - 3 q + 3 q - 2 q + q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 3]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 3]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 3]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 14 18 20 22 24 30 32 34 36 |
|||
q + q + q + q + q + 2 q - q - q - q - q</nowiki></pre></td></tr> |
q + q + q + q + q + 2 q - q - q - q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 3]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 3]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 6 |
|||
-3 3 -6 4 z 7 z 6 z z 5 z 5 z z z |
|||
--- + -- + a - ---- + ---- + ---- - --- + ---- + ---- + -- + -- |
|||
10 8 10 8 6 10 8 6 8 6 |
|||
a a a a a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 3]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
3 3 -6 2 z z z 4 z z 3 z 11 z 9 z |
3 3 -6 2 z z z 4 z z 3 z 11 z 9 z |
||
--- + -- - a - --- + --- - --- - --- - --- + ---- - ----- - ---- + |
--- + -- - a - --- + --- - --- - --- - --- + ---- - ----- - ---- + |
||
Line 106: | Line 168: | ||
9 7 10 8 |
9 7 10 8 |
||
a a a a</nowiki></pre></td></tr> |
a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 3]], Vassiliev[3][Knot[9, 3]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 3]], Vassiliev[3][Knot[9, 3]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{9, 26}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4 15 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 3]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4 15 4 |
|||
q + q + q t + q t + q t + q t + q t + 2 q t + q t + |
q + q + q t + q t + q t + q t + q t + 2 q t + q t + |
||
15 5 17 5 17 6 19 6 21 7 21 8 25 9 |
15 5 17 5 17 6 19 6 21 7 21 8 25 9 |
||
q t + 2 q t + 2 q t + q t + 2 q t + q t + q t</nowiki></pre></td></tr> |
q t + 2 q t + 2 q t + q t + 2 q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 3], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 7 9 10 11 12 13 14 15 16 |
|||
q - q + 3 q - 2 q - 2 q + 5 q - 2 q - 4 q + 6 q - q - |
|||
17 18 20 21 22 23 24 26 27 |
|||
5 q + 6 q - 6 q + 5 q + q - 6 q + 5 q - 4 q + 3 q - |
|||
28 29 30 32 33 |
|||
q - 2 q + 2 q - q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:08, 29 August 2005
|
|
Visit 9 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 3's page at Knotilus! Visit 9 3's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X14,6,15,5 X16,8,17,7 X2,12,3,11 X4,14,5,13 X6,16,7,15 |
Gauss code | 1, -7, 2, -8, 5, -9, 6, -1, 3, -4, 7, -2, 8, -5, 9, -6, 4, -3 |
Dowker-Thistlethwaite code | 8 12 14 16 18 2 4 6 10 |
Conway Notation | [63] |
Length is 10, width is 3. Braid index is 3. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 3"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (9, 26) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 9 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.