8 11: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_147]], [[K11n122]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 40: | Line 71: | ||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^4-2 q^3+6 q-7-3 q^{-1} +16 q^{-2} -12 q^{-3} -9 q^{-4} +25 q^{-5} -14 q^{-6} -15 q^{-7} +29 q^{-8} -13 q^{-9} -16 q^{-10} +25 q^{-11} -7 q^{-12} -12 q^{-13} +14 q^{-14} -2 q^{-15} -7 q^{-16} +5 q^{-17} -2 q^{-19} + q^{-20} </math>|J3=<math>q^9-2 q^8+2 q^6+3 q^5-6 q^4-5 q^3+9 q^2+12 q-14-18 q^{-1} +13 q^{-2} +33 q^{-3} -17 q^{-4} -41 q^{-5} +11 q^{-6} +57 q^{-7} -11 q^{-8} -63 q^{-9} + q^{-10} +76 q^{-11} -78 q^{-13} -7 q^{-14} +81 q^{-15} +10 q^{-16} -78 q^{-17} -13 q^{-18} +70 q^{-19} +20 q^{-20} -64 q^{-21} -18 q^{-22} +47 q^{-23} +22 q^{-24} -37 q^{-25} -20 q^{-26} +24 q^{-27} +18 q^{-28} -14 q^{-29} -14 q^{-30} +8 q^{-31} +9 q^{-32} -3 q^{-33} -6 q^{-34} +2 q^{-35} +2 q^{-36} -2 q^{-38} + q^{-39} </math>|J4=<math>q^{16}-2 q^{15}+2 q^{13}-q^{12}+4 q^{11}-8 q^{10}-q^9+8 q^8+13 q^6-26 q^5-11 q^4+18 q^3+11 q^2+40 q-52-40 q^{-1} +12 q^{-2} +27 q^{-3} +102 q^{-4} -66 q^{-5} -86 q^{-6} -25 q^{-7} +32 q^{-8} +185 q^{-9} -52 q^{-10} -124 q^{-11} -84 q^{-12} +15 q^{-13} +263 q^{-14} -19 q^{-15} -143 q^{-16} -141 q^{-17} -12 q^{-18} +313 q^{-19} +12 q^{-20} -142 q^{-21} -176 q^{-22} -38 q^{-23} +329 q^{-24} +33 q^{-25} -124 q^{-26} -183 q^{-27} -62 q^{-28} +303 q^{-29} +50 q^{-30} -86 q^{-31} -169 q^{-32} -83 q^{-33} +239 q^{-34} +60 q^{-35} -35 q^{-36} -128 q^{-37} -93 q^{-38} +149 q^{-39} +53 q^{-40} +12 q^{-41} -74 q^{-42} -84 q^{-43} +70 q^{-44} +29 q^{-45} +31 q^{-46} -27 q^{-47} -54 q^{-48} +24 q^{-49} +6 q^{-50} +23 q^{-51} -4 q^{-52} -24 q^{-53} +8 q^{-54} -2 q^{-55} +9 q^{-56} + q^{-57} -8 q^{-58} +3 q^{-59} - q^{-60} +2 q^{-61} -2 q^{-63} + q^{-64} </math>|J5=<math>q^{25}-2 q^{24}+2 q^{22}-q^{21}+2 q^{19}-4 q^{18}-2 q^{17}+7 q^{16}+2 q^{15}-2 q^{14}-q^{13}-13 q^{12}-6 q^{11}+15 q^{10}+23 q^9+9 q^8-12 q^7-42 q^6-36 q^5+18 q^4+62 q^3+65 q^2+9 q-90-116 q^{-1} -36 q^{-2} +91 q^{-3} +170 q^{-4} +115 q^{-5} -93 q^{-6} -238 q^{-7} -176 q^{-8} +46 q^{-9} +279 q^{-10} +297 q^{-11} -328 q^{-13} -373 q^{-14} -86 q^{-15} +329 q^{-16} +495 q^{-17} +162 q^{-18} -346 q^{-19} -549 q^{-20} -261 q^{-21} +320 q^{-22} +640 q^{-23} +326 q^{-24} -312 q^{-25} -664 q^{-26} -402 q^{-27} +276 q^{-28} +713 q^{-29} +445 q^{-30} -261 q^{-31} -710 q^{-32} -487 q^{-33} +224 q^{-34} +720 q^{-35} +509 q^{-36} -195 q^{-37} -700 q^{-38} -521 q^{-39} +154 q^{-40} +660 q^{-41} +535 q^{-42} -103 q^{-43} -624 q^{-44} -519 q^{-45} +54 q^{-46} +533 q^{-47} +513 q^{-48} +20 q^{-49} -471 q^{-50} -467 q^{-51} -66 q^{-52} +347 q^{-53} +425 q^{-54} +125 q^{-55} -255 q^{-56} -356 q^{-57} -148 q^{-58} +145 q^{-59} +280 q^{-60} +164 q^{-61} -67 q^{-62} -199 q^{-63} -151 q^{-64} +6 q^{-65} +127 q^{-66} +123 q^{-67} +29 q^{-68} -69 q^{-69} -90 q^{-70} -38 q^{-71} +28 q^{-72} +56 q^{-73} +39 q^{-74} -10 q^{-75} -32 q^{-76} -23 q^{-77} -5 q^{-78} +15 q^{-79} +20 q^{-80} + q^{-81} -9 q^{-82} -4 q^{-83} -5 q^{-84} + q^{-85} +8 q^{-86} -4 q^{-88} + q^{-89} - q^{-91} +2 q^{-92} -2 q^{-94} + q^{-95} </math>|J6=<math>q^{36}-2 q^{35}+2 q^{33}-q^{32}-2 q^{30}+6 q^{29}-5 q^{28}-3 q^{27}+9 q^{26}-2 q^{25}-2 q^{24}-10 q^{23}+12 q^{22}-12 q^{21}-5 q^{20}+29 q^{19}+9 q^{18}-34 q^{16}+9 q^{15}-48 q^{14}-22 q^{13}+71 q^{12}+59 q^{11}+47 q^{10}-48 q^9-6 q^8-154 q^7-118 q^6+79 q^5+148 q^4+193 q^3+47 q^2+57 q-319-361 q^{-1} -83 q^{-2} +154 q^{-3} +403 q^{-4} +329 q^{-5} +360 q^{-6} -382 q^{-7} -690 q^{-8} -493 q^{-9} -100 q^{-10} +489 q^{-11} +715 q^{-12} +950 q^{-13} -164 q^{-14} -895 q^{-15} -1035 q^{-16} -638 q^{-17} +291 q^{-18} +995 q^{-19} +1667 q^{-20} +322 q^{-21} -837 q^{-22} -1487 q^{-23} -1280 q^{-24} -143 q^{-25} +1056 q^{-26} +2276 q^{-27} +881 q^{-28} -580 q^{-29} -1736 q^{-30} -1805 q^{-31} -618 q^{-32} +955 q^{-33} +2660 q^{-34} +1318 q^{-35} -282 q^{-36} -1812 q^{-37} -2120 q^{-38} -982 q^{-39} +803 q^{-40} +2839 q^{-41} +1576 q^{-42} -48 q^{-43} -1784 q^{-44} -2252 q^{-45} -1213 q^{-46} +652 q^{-47} +2858 q^{-48} +1703 q^{-49} +136 q^{-50} -1676 q^{-51} -2251 q^{-52} -1367 q^{-53} +468 q^{-54} +2720 q^{-55} +1749 q^{-56} +341 q^{-57} -1445 q^{-58} -2120 q^{-59} -1484 q^{-60} +194 q^{-61} +2373 q^{-62} +1698 q^{-63} +598 q^{-64} -1038 q^{-65} -1804 q^{-66} -1526 q^{-67} -180 q^{-68} +1785 q^{-69} +1479 q^{-70} +823 q^{-71} -486 q^{-72} -1275 q^{-73} -1392 q^{-74} -526 q^{-75} +1042 q^{-76} +1050 q^{-77} +870 q^{-78} +29 q^{-79} -629 q^{-80} -1036 q^{-81} -664 q^{-82} +382 q^{-83} +511 q^{-84} +669 q^{-85} +296 q^{-86} -95 q^{-87} -565 q^{-88} -534 q^{-89} +14 q^{-90} +84 q^{-91} +339 q^{-92} +278 q^{-93} +152 q^{-94} -192 q^{-95} -280 q^{-96} -64 q^{-97} -92 q^{-98} +88 q^{-99} +134 q^{-100} +156 q^{-101} -26 q^{-102} -93 q^{-103} -19 q^{-104} -87 q^{-105} -6 q^{-106} +31 q^{-107} +82 q^{-108} +5 q^{-109} -23 q^{-110} +11 q^{-111} -38 q^{-112} -13 q^{-113} - q^{-114} +31 q^{-115} + q^{-116} -8 q^{-117} +11 q^{-118} -11 q^{-119} -4 q^{-120} -3 q^{-121} +10 q^{-122} - q^{-123} -5 q^{-124} +5 q^{-125} -2 q^{-126} - q^{-128} +2 q^{-129} -2 q^{-131} + q^{-132} </math>|J7=<math>q^{49}-2 q^{48}+2 q^{46}-q^{45}-2 q^{43}+2 q^{42}+5 q^{41}-6 q^{40}-q^{39}+5 q^{38}-2 q^{37}-10 q^{35}-q^{34}+17 q^{33}-9 q^{32}+3 q^{31}+15 q^{30}+q^{29}+4 q^{28}-35 q^{27}-27 q^{26}+15 q^{25}-14 q^{24}+23 q^{23}+57 q^{22}+34 q^{21}+46 q^{20}-60 q^{19}-108 q^{18}-55 q^{17}-97 q^{16}+21 q^{15}+134 q^{14}+162 q^{13}+224 q^{12}+25 q^{11}-167 q^{10}-230 q^9-390 q^8-203 q^7+102 q^6+317 q^5+630 q^4+453 q^3+81 q^2-286 q-879-850 q^{-1} -427 q^{-2} +140 q^{-3} +1047 q^{-4} +1282 q^{-5} +971 q^{-6} +282 q^{-7} -1101 q^{-8} -1766 q^{-9} -1642 q^{-10} -875 q^{-11} +899 q^{-12} +2070 q^{-13} +2424 q^{-14} +1790 q^{-15} -448 q^{-16} -2303 q^{-17} -3176 q^{-18} -2750 q^{-19} -270 q^{-20} +2175 q^{-21} +3813 q^{-22} +3919 q^{-23} +1202 q^{-24} -1938 q^{-25} -4306 q^{-26} -4906 q^{-27} -2225 q^{-28} +1351 q^{-29} +4564 q^{-30} +5924 q^{-31} +3301 q^{-32} -782 q^{-33} -4660 q^{-34} -6631 q^{-35} -4276 q^{-36} +20 q^{-37} +4580 q^{-38} +7291 q^{-39} +5133 q^{-40} +589 q^{-41} -4418 q^{-42} -7646 q^{-43} -5818 q^{-44} -1243 q^{-45} +4202 q^{-46} +7969 q^{-47} +6348 q^{-48} +1679 q^{-49} -3984 q^{-50} -8069 q^{-51} -6719 q^{-52} -2117 q^{-53} +3761 q^{-54} +8190 q^{-55} +6990 q^{-56} +2371 q^{-57} -3572 q^{-58} -8156 q^{-59} -7149 q^{-60} -2653 q^{-61} +3361 q^{-62} +8135 q^{-63} +7273 q^{-64} +2847 q^{-65} -3153 q^{-66} -8004 q^{-67} -7327 q^{-68} -3063 q^{-69} +2859 q^{-70} +7798 q^{-71} +7355 q^{-72} +3317 q^{-73} -2509 q^{-74} -7516 q^{-75} -7290 q^{-76} -3535 q^{-77} +2025 q^{-78} +7006 q^{-79} +7159 q^{-80} +3863 q^{-81} -1446 q^{-82} -6434 q^{-83} -6886 q^{-84} -4039 q^{-85} +750 q^{-86} +5551 q^{-87} +6445 q^{-88} +4289 q^{-89} +4 q^{-90} -4645 q^{-91} -5824 q^{-92} -4279 q^{-93} -722 q^{-94} +3488 q^{-95} +5005 q^{-96} +4195 q^{-97} +1379 q^{-98} -2404 q^{-99} -4063 q^{-100} -3827 q^{-101} -1826 q^{-102} +1327 q^{-103} +3008 q^{-104} +3314 q^{-105} +2069 q^{-106} -452 q^{-107} -2001 q^{-108} -2633 q^{-109} -2036 q^{-110} -203 q^{-111} +1099 q^{-112} +1901 q^{-113} +1804 q^{-114} +575 q^{-115} -397 q^{-116} -1198 q^{-117} -1437 q^{-118} -703 q^{-119} -65 q^{-120} +625 q^{-121} +1007 q^{-122} +647 q^{-123} +307 q^{-124} -212 q^{-125} -624 q^{-126} -486 q^{-127} -371 q^{-128} -35 q^{-129} +331 q^{-130} +313 q^{-131} +318 q^{-132} +127 q^{-133} -129 q^{-134} -145 q^{-135} -241 q^{-136} -160 q^{-137} +40 q^{-138} +66 q^{-139} +141 q^{-140} +106 q^{-141} +10 q^{-142} +15 q^{-143} -85 q^{-144} -95 q^{-145} -11 q^{-146} -6 q^{-147} +42 q^{-148} +34 q^{-149} +7 q^{-150} +33 q^{-151} -16 q^{-152} -37 q^{-153} -6 q^{-154} -8 q^{-155} +14 q^{-156} +6 q^{-157} -6 q^{-158} +16 q^{-159} -10 q^{-161} -2 q^{-162} -3 q^{-163} +6 q^{-164} + q^{-165} -6 q^{-166} +4 q^{-167} +2 q^{-168} -2 q^{-169} - q^{-171} +2 q^{-172} -2 q^{-174} + q^{-175} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 47: | Line 81: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[8, 11]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 11]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[9, 16, 10, 1], X[15, 6, 16, 7], X[7, 14, 8, 15], X[13, 8, 14, 9]]</nowiki></pre></td></tr> |
X[9, 16, 10, 1], X[15, 6, 16, 7], X[7, 14, 8, 15], X[13, 8, 14, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 11]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 11]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -7, 8, -5, 3, -4, 2, -8, 7, -6, 5]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 11]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 14, 16, 2, 8, 6]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 11]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -2, 1, -2, -2, 3, -2, 3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -2, 1, -2, -2, 3, -2, 3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 11]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 11]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 11]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_11_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 11]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, {4, 5}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 11]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 7 2 |
|||
-9 - -- + - + 7 t - 2 t |
-9 - -- + - + 7 t - 2 t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 11]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 11]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 - z - 2 z</nowiki></pre></td></tr> |
1 - z - 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 11], Knot[10, 147], Knot[11, NonAlternating, 122]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{27, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 11]], KnotSignature[Knot[8, 11]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{27, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 11]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 3 5 5 4 4 |
|||
-2 + q - -- + -- - -- + -- - -- + - + q |
-2 + q - -- + -- - -- + -- - -- + - + q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></pre></td></tr> |
q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 11]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 11]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 11]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -16 2 -12 -10 2 2 4 |
|||
q + q - --- - q - q + -- + -- + q |
q + q - --- - q - q + -- + -- + q |
||
14 6 2 |
14 6 2 |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 11]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 11]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 2 4 2 6 2 2 4 4 4 |
|||
1 + a - 2 a + a + z - a z - 2 a z + a z - a z - a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 11]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 2 4 2 |
|||
1 - a - 2 a - a + a z + 3 a z + 2 a z - 2 z + 6 a z + |
1 - a - 2 a - a + a z + 3 a z + 2 a z - 2 z + 6 a z + |
||
Line 95: | Line 155: | ||
7 5 2 6 4 6 6 6 3 7 5 7 |
7 5 2 6 4 6 6 6 3 7 5 7 |
||
2 a z + 2 a z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
2 a z + 2 a z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 11]], Vassiliev[3][Knot[8, 11]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 11]], Vassiliev[3][Knot[8, 11]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 1 1 2 1 3 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 11]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 1 1 2 1 3 2 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
||
Line 107: | Line 169: | ||
7 2 5 2 5 3 q |
7 2 5 2 5 3 q |
||
q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 11], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 2 5 7 2 14 12 7 25 16 13 |
|||
-7 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - -- + |
|||
19 17 16 15 14 13 12 11 10 9 |
|||
q q q q q q q q q q |
|||
29 15 14 25 9 12 16 3 3 4 |
|||
-- - -- - -- + -- - -- - -- + -- - - + 6 q - 2 q + q |
|||
8 7 6 5 4 3 2 q |
|||
q q q q q q q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:06, 29 August 2005
|
|
Visit 8 11's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 11's page at Knotilus! Visit 8 11's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,16,10,1 X15,6,16,7 X7,14,8,15 X13,8,14,9 |
Gauss code | -1, 4, -3, 1, -2, 6, -7, 8, -5, 3, -4, 2, -8, 7, -6, 5 |
Dowker-Thistlethwaite code | 4 10 12 14 16 2 8 6 |
Conway Notation | [3212] |
Length is 9, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 11"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 27, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_147, K11n122, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-1, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 11. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.