7 6: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 7, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_133]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 39: | Line 70: | ||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^4-2 q^3-q^2+6 q-4-5 q^{-1} +12 q^{-2} -5 q^{-3} -10 q^{-4} +16 q^{-5} -4 q^{-6} -13 q^{-7} +17 q^{-8} -3 q^{-9} -12 q^{-10} +12 q^{-11} - q^{-12} -7 q^{-13} +5 q^{-14} -2 q^{-16} + q^{-17} </math>|J3=<math>q^9-2 q^8-q^7+2 q^6+5 q^5-3 q^4-9 q^3+2 q^2+14 q-18 q^{-1} -5 q^{-2} +24 q^{-3} +9 q^{-4} -26 q^{-5} -15 q^{-6} +30 q^{-7} +19 q^{-8} -29 q^{-9} -26 q^{-10} +33 q^{-11} +26 q^{-12} -30 q^{-13} -31 q^{-14} +31 q^{-15} +28 q^{-16} -25 q^{-17} -29 q^{-18} +22 q^{-19} +25 q^{-20} -16 q^{-21} -20 q^{-22} +10 q^{-23} +15 q^{-24} -6 q^{-25} -10 q^{-26} +3 q^{-27} +6 q^{-28} -2 q^{-29} -2 q^{-30} +2 q^{-32} - q^{-33} </math>|J4=<math>q^{16}-2 q^{15}-q^{14}+2 q^{13}+q^{12}+6 q^{11}-7 q^{10}-7 q^9+2 q^7+24 q^6-8 q^5-17 q^4-12 q^3-6 q^2+49 q+3-18 q^{-1} -32 q^{-2} -31 q^{-3} +71 q^{-4} +23 q^{-5} -6 q^{-6} -50 q^{-7} -64 q^{-8} +81 q^{-9} +43 q^{-10} +16 q^{-11} -62 q^{-12} -96 q^{-13} +83 q^{-14} +58 q^{-15} +36 q^{-16} -69 q^{-17} -118 q^{-18} +80 q^{-19} +66 q^{-20} +50 q^{-21} -69 q^{-22} -127 q^{-23} +72 q^{-24} +64 q^{-25} +57 q^{-26} -57 q^{-27} -119 q^{-28} +52 q^{-29} +51 q^{-30} +57 q^{-31} -36 q^{-32} -93 q^{-33} +29 q^{-34} +28 q^{-35} +44 q^{-36} -13 q^{-37} -56 q^{-38} +12 q^{-39} +7 q^{-40} +25 q^{-41} - q^{-42} -25 q^{-43} +6 q^{-44} - q^{-45} +9 q^{-46} + q^{-47} -8 q^{-48} +3 q^{-49} - q^{-50} +2 q^{-51} -2 q^{-53} + q^{-54} </math>|J5=<math>q^{25}-2 q^{24}-q^{23}+2 q^{22}+q^{21}+2 q^{20}+2 q^{19}-5 q^{18}-9 q^{17}+5 q^{15}+11 q^{14}+13 q^{13}-4 q^{12}-22 q^{11}-22 q^{10}-2 q^9+23 q^8+39 q^7+19 q^6-25 q^5-53 q^4-41 q^3+13 q^2+68 q+66+7 q^{-1} -71 q^{-2} -97 q^{-3} -37 q^{-4} +74 q^{-5} +121 q^{-6} +68 q^{-7} -56 q^{-8} -147 q^{-9} -107 q^{-10} +44 q^{-11} +163 q^{-12} +139 q^{-13} -17 q^{-14} -176 q^{-15} -179 q^{-16} +3 q^{-17} +183 q^{-18} +201 q^{-19} +29 q^{-20} -193 q^{-21} -233 q^{-22} -35 q^{-23} +192 q^{-24} +244 q^{-25} +64 q^{-26} -198 q^{-27} -269 q^{-28} -62 q^{-29} +192 q^{-30} +266 q^{-31} +89 q^{-32} -190 q^{-33} -280 q^{-34} -85 q^{-35} +174 q^{-36} +265 q^{-37} +108 q^{-38} -157 q^{-39} -262 q^{-40} -107 q^{-41} +132 q^{-42} +234 q^{-43} +118 q^{-44} -103 q^{-45} -206 q^{-46} -115 q^{-47} +71 q^{-48} +170 q^{-49} +105 q^{-50} -41 q^{-51} -129 q^{-52} -91 q^{-53} +17 q^{-54} +90 q^{-55} +73 q^{-56} -3 q^{-57} -56 q^{-58} -53 q^{-59} -4 q^{-60} +32 q^{-61} +32 q^{-62} +8 q^{-63} -16 q^{-64} -21 q^{-65} -4 q^{-66} +10 q^{-67} +6 q^{-68} +4 q^{-69} - q^{-70} -8 q^{-71} +4 q^{-73} - q^{-74} + q^{-76} -2 q^{-77} +2 q^{-79} - q^{-80} </math>|J6=<math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+2 q^{31}-2 q^{30}+4 q^{29}-7 q^{28}-9 q^{27}+3 q^{26}+4 q^{25}+11 q^{24}+3 q^{23}+18 q^{22}-16 q^{21}-29 q^{20}-14 q^{19}-5 q^{18}+20 q^{17}+18 q^{16}+69 q^{15}-3 q^{14}-46 q^{13}-53 q^{12}-52 q^{11}-9 q^{10}+16 q^9+150 q^8+63 q^7-7 q^6-75 q^5-122 q^4-109 q^3-60 q^2+209 q+158+113 q^{-1} -19 q^{-2} -155 q^{-3} -247 q^{-4} -225 q^{-5} +183 q^{-6} +220 q^{-7} +275 q^{-8} +124 q^{-9} -100 q^{-10} -361 q^{-11} -429 q^{-12} +71 q^{-13} +207 q^{-14} +419 q^{-15} +304 q^{-16} +28 q^{-17} -416 q^{-18} -614 q^{-19} -77 q^{-20} +136 q^{-21} +516 q^{-22} +470 q^{-23} +176 q^{-24} -429 q^{-25} -750 q^{-26} -211 q^{-27} +55 q^{-28} +574 q^{-29} +592 q^{-30} +301 q^{-31} -428 q^{-32} -840 q^{-33} -308 q^{-34} -9 q^{-35} +609 q^{-36} +669 q^{-37} +387 q^{-38} -420 q^{-39} -889 q^{-40} -371 q^{-41} -56 q^{-42} +614 q^{-43} +709 q^{-44} +448 q^{-45} -390 q^{-46} -889 q^{-47} -416 q^{-48} -109 q^{-49} +572 q^{-50} +707 q^{-51} +496 q^{-52} -314 q^{-53} -820 q^{-54} -439 q^{-55} -177 q^{-56} +464 q^{-57} +641 q^{-58} +517 q^{-59} -190 q^{-60} -660 q^{-61} -409 q^{-62} -240 q^{-63} +295 q^{-64} +493 q^{-65} +476 q^{-66} -53 q^{-67} -434 q^{-68} -304 q^{-69} -251 q^{-70} +116 q^{-71} +294 q^{-72} +359 q^{-73} +35 q^{-74} -214 q^{-75} -161 q^{-76} -192 q^{-77} +3 q^{-78} +119 q^{-79} +210 q^{-80} +47 q^{-81} -75 q^{-82} -45 q^{-83} -104 q^{-84} -26 q^{-85} +25 q^{-86} +92 q^{-87} +23 q^{-88} -23 q^{-89} +4 q^{-90} -38 q^{-91} -16 q^{-92} - q^{-93} +32 q^{-94} +4 q^{-95} -9 q^{-96} +9 q^{-97} -10 q^{-98} -4 q^{-99} -3 q^{-100} +10 q^{-101} - q^{-102} -5 q^{-103} +5 q^{-104} -2 q^{-105} - q^{-107} +2 q^{-108} -2 q^{-110} + q^{-111} </math>|J7=<math>q^{49}-2 q^{48}-q^{47}+2 q^{46}+q^{45}+2 q^{44}-2 q^{43}+2 q^{41}-7 q^{40}-6 q^{39}+2 q^{38}+4 q^{37}+13 q^{36}+4 q^{35}+q^{34}+9 q^{33}-20 q^{32}-25 q^{31}-17 q^{30}-7 q^{29}+30 q^{28}+29 q^{27}+29 q^{26}+44 q^{25}-15 q^{24}-51 q^{23}-67 q^{22}-82 q^{21}+3 q^{20}+41 q^{19}+80 q^{18}+146 q^{17}+66 q^{16}-10 q^{15}-103 q^{14}-210 q^{13}-137 q^{12}-61 q^{11}+61 q^{10}+264 q^9+243 q^8+177 q^7+14 q^6-281 q^5-334 q^4-328 q^3-151 q^2+244 q+402+483 q^{-1} +344 q^{-2} -133 q^{-3} -423 q^{-4} -643 q^{-5} -568 q^{-6} -19 q^{-7} +374 q^{-8} +753 q^{-9} +804 q^{-10} +251 q^{-11} -270 q^{-12} -838 q^{-13} -1033 q^{-14} -485 q^{-15} +115 q^{-16} +846 q^{-17} +1231 q^{-18} +752 q^{-19} +88 q^{-20} -830 q^{-21} -1410 q^{-22} -986 q^{-23} -293 q^{-24} +764 q^{-25} +1525 q^{-26} +1227 q^{-27} +515 q^{-28} -695 q^{-29} -1640 q^{-30} -1409 q^{-31} -698 q^{-32} +593 q^{-33} +1702 q^{-34} +1594 q^{-35} +882 q^{-36} -533 q^{-37} -1773 q^{-38} -1707 q^{-39} -1014 q^{-40} +442 q^{-41} +1802 q^{-42} +1843 q^{-43} +1142 q^{-44} -411 q^{-45} -1852 q^{-46} -1903 q^{-47} -1215 q^{-48} +335 q^{-49} +1857 q^{-50} +1997 q^{-51} +1310 q^{-52} -320 q^{-53} -1889 q^{-54} -2017 q^{-55} -1348 q^{-56} +242 q^{-57} +1855 q^{-58} +2076 q^{-59} +1433 q^{-60} -210 q^{-61} -1843 q^{-62} -2062 q^{-63} -1459 q^{-64} +103 q^{-65} +1748 q^{-66} +2069 q^{-67} +1529 q^{-68} -21 q^{-69} -1657 q^{-70} -1998 q^{-71} -1541 q^{-72} -114 q^{-73} +1477 q^{-74} +1907 q^{-75} +1561 q^{-76} +239 q^{-77} -1278 q^{-78} -1748 q^{-79} -1517 q^{-80} -374 q^{-81} +1031 q^{-82} +1536 q^{-83} +1432 q^{-84} +486 q^{-85} -768 q^{-86} -1277 q^{-87} -1301 q^{-88} -551 q^{-89} +514 q^{-90} +994 q^{-91} +1110 q^{-92} +571 q^{-93} -285 q^{-94} -715 q^{-95} -892 q^{-96} -545 q^{-97} +117 q^{-98} +465 q^{-99} +671 q^{-100} +465 q^{-101} -9 q^{-102} -259 q^{-103} -464 q^{-104} -366 q^{-105} -50 q^{-106} +120 q^{-107} +296 q^{-108} +265 q^{-109} +61 q^{-110} -41 q^{-111} -170 q^{-112} -167 q^{-113} -48 q^{-114} -13 q^{-115} +89 q^{-116} +110 q^{-117} +34 q^{-118} +12 q^{-119} -49 q^{-120} -48 q^{-121} -11 q^{-122} -26 q^{-123} +14 q^{-124} +37 q^{-125} +10 q^{-126} +8 q^{-127} -15 q^{-128} -9 q^{-129} +7 q^{-130} -14 q^{-131} - q^{-132} +10 q^{-133} +2 q^{-134} +3 q^{-135} -6 q^{-136} - q^{-137} +6 q^{-138} -4 q^{-139} -2 q^{-140} +2 q^{-141} + q^{-143} -2 q^{-144} +2 q^{-146} - q^{-147} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 46: | Line 80: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[7, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[7, 6]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 1, 10, 14], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 1, 10, 14], |
|||
X[13, 11, 14, 10], X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
X[13, 11, 14, 10], X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 6]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[7, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 12, 2, 14, 6, 10]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[7, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, -3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 6]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 7}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[7, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[7, 6]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:7_6_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[7, 6]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, 4, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 6]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 5 2 |
|||
-7 - t + - + 5 t - t |
-7 - t + - + 5 t - t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 6]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 6]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 + z - z</nowiki></pre></td></tr> |
1 + z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 6], Knot[10, 133]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[7, 6]], KnotSignature[Knot[7, 6]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[7, 6]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 3 4 3 3 |
|||
-2 - q + -- - -- + -- - -- + - + q |
-2 - q + -- - -- + -- - -- + - + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 6]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[7, 6]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[7, 6]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 -18 -16 -12 -10 -6 -4 -2 4 |
|||
-q - q + q + q + q + q - q + q + q</nowiki></pre></td></tr> |
-q - q + q + q + q + q - q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 6]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[7, 6]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 2 4 2 2 4 |
|||
1 - a + 2 a - a + z - 2 a z + 2 a z - a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 6]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 7 2 2 2 4 2 |
|||
1 + a + 2 a + a + a z + 2 a z - a z - 2 z - 4 a z - 4 a z - |
1 + a + 2 a + a + a z + 2 a z - a z - 2 z - 4 a z - 4 a z - |
||
Line 88: | Line 148: | ||
6 4 5 3 5 5 5 2 6 4 6 |
6 4 5 3 5 5 5 2 6 4 6 |
||
2 a z + 2 a z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
2 a z + 2 a z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 6]], Vassiliev[3][Knot[7, 6]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 6]], Vassiliev[3][Knot[7, 6]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 2 1 1 1 2 1 2 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[7, 6]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 2 1 1 1 2 1 2 2 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
||
Line 100: | Line 162: | ||
5 3 q |
5 3 q |
||
q t q t</nowiki></pre></td></tr> |
q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[7, 6], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 2 5 7 -12 12 12 3 17 13 4 |
|||
-4 + q - --- + --- - --- - q + --- - --- - -- + -- - -- - -- + |
|||
16 14 13 11 10 9 8 7 6 |
|||
q q q q q q q q q |
|||
16 10 5 12 5 2 3 4 |
|||
-- - -- - -- + -- - - + 6 q - q - 2 q + q |
|||
5 4 3 2 q |
|||
q q q q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:05, 29 August 2005
|
|
Visit 7 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 7 6's page at Knotilus! Visit 7 6's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X3849 X5,12,6,13 X9,1,10,14 X13,11,14,10 X11,6,12,7 X7283 |
Gauss code | -1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4 |
Dowker-Thistlethwaite code | 4 8 12 2 14 6 10 |
Conway Notation | [2212] |
Length is 7, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 6"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_133, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 7 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.