8 6: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n20]], [[K11n151]], [[K11n152]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 40: | Line 71: | ||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^4-q^3+3 q-4- q^{-1} +9 q^{-2} -9 q^{-3} -4 q^{-4} +17 q^{-5} -12 q^{-6} -8 q^{-7} +21 q^{-8} -12 q^{-9} -9 q^{-10} +19 q^{-11} -8 q^{-12} -8 q^{-13} +12 q^{-14} -3 q^{-15} -6 q^{-16} +5 q^{-17} -2 q^{-19} + q^{-20} </math>|J3=<math>q^9-q^8+2 q^5-3 q^4+2 q^2+4 q-8-3 q^{-1} +8 q^{-2} +12 q^{-3} -16 q^{-4} -14 q^{-5} +15 q^{-6} +25 q^{-7} -18 q^{-8} -32 q^{-9} +18 q^{-10} +39 q^{-11} -17 q^{-12} -44 q^{-13} +16 q^{-14} +46 q^{-15} -13 q^{-16} -48 q^{-17} +12 q^{-18} +44 q^{-19} -7 q^{-20} -42 q^{-21} +4 q^{-22} +35 q^{-23} +2 q^{-24} -29 q^{-25} -5 q^{-26} +22 q^{-27} +7 q^{-28} -14 q^{-29} -9 q^{-30} +9 q^{-31} +7 q^{-32} -4 q^{-33} -5 q^{-34} +2 q^{-35} +2 q^{-36} -2 q^{-38} + q^{-39} </math>|J4=<math>q^{16}-q^{15}-q^{12}+3 q^{11}-3 q^{10}+q^9+2 q^8-4 q^7+5 q^6-8 q^5+3 q^4+9 q^3-5 q^2+7 q-23+21 q^{-2} +5 q^{-3} +20 q^{-4} -50 q^{-5} -19 q^{-6} +28 q^{-7} +25 q^{-8} +54 q^{-9} -74 q^{-10} -52 q^{-11} +17 q^{-12} +42 q^{-13} +103 q^{-14} -86 q^{-15} -84 q^{-16} -3 q^{-17} +50 q^{-18} +142 q^{-19} -86 q^{-20} -100 q^{-21} -21 q^{-22} +49 q^{-23} +163 q^{-24} -79 q^{-25} -103 q^{-26} -32 q^{-27} +41 q^{-28} +163 q^{-29} -64 q^{-30} -91 q^{-31} -41 q^{-32} +24 q^{-33} +146 q^{-34} -39 q^{-35} -65 q^{-36} -46 q^{-37} - q^{-38} +112 q^{-39} -11 q^{-40} -30 q^{-41} -42 q^{-42} -23 q^{-43} +70 q^{-44} +4 q^{-45} -25 q^{-47} -29 q^{-48} +31 q^{-49} +4 q^{-50} +12 q^{-51} -8 q^{-52} -19 q^{-53} +10 q^{-54} - q^{-55} +7 q^{-56} -7 q^{-58} +3 q^{-59} - q^{-60} +2 q^{-61} -2 q^{-63} + q^{-64} </math>|J5=<math>q^{25}-q^{24}-q^{21}+3 q^{19}-2 q^{18}+2 q^{16}-3 q^{15}-3 q^{14}+5 q^{13}-2 q^{12}+2 q^{11}+7 q^{10}-4 q^9-10 q^8-5 q^6+7 q^5+22 q^4+4 q^3-14 q^2-18 q-27+2 q^{-1} +46 q^{-2} +39 q^{-3} +7 q^{-4} -33 q^{-5} -80 q^{-6} -43 q^{-7} +52 q^{-8} +97 q^{-9} +75 q^{-10} -16 q^{-11} -133 q^{-12} -135 q^{-13} +6 q^{-14} +144 q^{-15} +175 q^{-16} +49 q^{-17} -158 q^{-18} -230 q^{-19} -85 q^{-20} +156 q^{-21} +268 q^{-22} +129 q^{-23} -148 q^{-24} -300 q^{-25} -166 q^{-26} +139 q^{-27} +322 q^{-28} +193 q^{-29} -127 q^{-30} -332 q^{-31} -218 q^{-32} +118 q^{-33} +339 q^{-34} +228 q^{-35} -103 q^{-36} -336 q^{-37} -242 q^{-38} +93 q^{-39} +330 q^{-40} +240 q^{-41} -73 q^{-42} -310 q^{-43} -250 q^{-44} +57 q^{-45} +289 q^{-46} +237 q^{-47} -25 q^{-48} -252 q^{-49} -237 q^{-50} + q^{-51} +212 q^{-52} +215 q^{-53} +31 q^{-54} -159 q^{-55} -195 q^{-56} -57 q^{-57} +111 q^{-58} +161 q^{-59} +74 q^{-60} -61 q^{-61} -122 q^{-62} -81 q^{-63} +18 q^{-64} +86 q^{-65} +73 q^{-66} +8 q^{-67} -46 q^{-68} -58 q^{-69} -26 q^{-70} +20 q^{-71} +39 q^{-72} +26 q^{-73} +2 q^{-74} -24 q^{-75} -21 q^{-76} -6 q^{-77} +6 q^{-78} +15 q^{-79} +10 q^{-80} -4 q^{-81} -8 q^{-82} -2 q^{-83} -3 q^{-84} +2 q^{-85} +6 q^{-86} - q^{-87} -3 q^{-88} + q^{-89} - q^{-91} +2 q^{-92} -2 q^{-94} + q^{-95} </math>|J6=<math>q^{36}-q^{35}-q^{32}+4 q^{29}-3 q^{28}+2 q^{26}-3 q^{25}-2 q^{24}-2 q^{23}+10 q^{22}-4 q^{21}+7 q^{19}-6 q^{18}-9 q^{17}-9 q^{16}+18 q^{15}-3 q^{14}+5 q^{13}+21 q^{12}-7 q^{11}-23 q^{10}-32 q^9+18 q^8-6 q^7+19 q^6+61 q^5+14 q^4-30 q^3-75 q^2-16 q-53+19 q^{-1} +131 q^{-2} +94 q^{-3} +25 q^{-4} -100 q^{-5} -79 q^{-6} -193 q^{-7} -69 q^{-8} +173 q^{-9} +224 q^{-10} +193 q^{-11} -21 q^{-12} -97 q^{-13} -399 q^{-14} -290 q^{-15} +92 q^{-16} +318 q^{-17} +430 q^{-18} +197 q^{-19} +18 q^{-20} -576 q^{-21} -581 q^{-22} -126 q^{-23} +300 q^{-24} +632 q^{-25} +472 q^{-26} +251 q^{-27} -651 q^{-28} -832 q^{-29} -385 q^{-30} +192 q^{-31} +738 q^{-32} +698 q^{-33} +492 q^{-34} -643 q^{-35} -977 q^{-36} -587 q^{-37} +75 q^{-38} +763 q^{-39} +826 q^{-40} +664 q^{-41} -608 q^{-42} -1031 q^{-43} -701 q^{-44} -8 q^{-45} +749 q^{-46} +876 q^{-47} +757 q^{-48} -565 q^{-49} -1030 q^{-50} -753 q^{-51} -64 q^{-52} +706 q^{-53} +879 q^{-54} +802 q^{-55} -498 q^{-56} -978 q^{-57} -770 q^{-58} -126 q^{-59} +613 q^{-60} +837 q^{-61} +823 q^{-62} -377 q^{-63} -852 q^{-64} -750 q^{-65} -213 q^{-66} +440 q^{-67} +723 q^{-68} +814 q^{-69} -192 q^{-70} -630 q^{-71} -664 q^{-72} -303 q^{-73} +198 q^{-74} +519 q^{-75} +735 q^{-76} +7 q^{-77} -339 q^{-78} -486 q^{-79} -330 q^{-80} -41 q^{-81} +256 q^{-82} +556 q^{-83} +127 q^{-84} -70 q^{-85} -251 q^{-86} -247 q^{-87} -172 q^{-88} +27 q^{-89} +317 q^{-90} +116 q^{-91} +74 q^{-92} -52 q^{-93} -100 q^{-94} -158 q^{-95} -79 q^{-96} +118 q^{-97} +35 q^{-98} +77 q^{-99} +33 q^{-100} +11 q^{-101} -77 q^{-102} -68 q^{-103} +26 q^{-104} -22 q^{-105} +28 q^{-106} +26 q^{-107} +39 q^{-108} -19 q^{-109} -28 q^{-110} +11 q^{-111} -24 q^{-112} +4 q^{-114} +22 q^{-115} -3 q^{-116} -8 q^{-117} +9 q^{-118} -9 q^{-119} -2 q^{-120} -2 q^{-121} +8 q^{-122} -2 q^{-123} -4 q^{-124} +5 q^{-125} -2 q^{-126} - q^{-128} +2 q^{-129} -2 q^{-131} + q^{-132} </math>|J7=<math>q^{49}-q^{48}-q^{45}+q^{42}+3 q^{41}-3 q^{40}+2 q^{38}-3 q^{37}-q^{36}-2 q^{35}+2 q^{34}+9 q^{33}-6 q^{32}-q^{31}+5 q^{30}-5 q^{29}-3 q^{28}-9 q^{27}+3 q^{26}+21 q^{25}-5 q^{24}-q^{23}+7 q^{22}-11 q^{21}-8 q^{20}-26 q^{19}-2 q^{18}+41 q^{17}+9 q^{16}+17 q^{15}+18 q^{14}-20 q^{13}-27 q^{12}-70 q^{11}-37 q^{10}+45 q^9+32 q^8+78 q^7+88 q^6+11 q^5-33 q^4-150 q^3-152 q^2-45 q-14+148 q^{-1} +253 q^{-2} +185 q^{-3} +98 q^{-4} -168 q^{-5} -329 q^{-6} -300 q^{-7} -286 q^{-8} +52 q^{-9} +399 q^{-10} +512 q^{-11} +511 q^{-12} +84 q^{-13} -366 q^{-14} -625 q^{-15} -824 q^{-16} -409 q^{-17} +264 q^{-18} +776 q^{-19} +1136 q^{-20} +720 q^{-21} -33 q^{-22} -742 q^{-23} -1441 q^{-24} -1179 q^{-25} -293 q^{-26} +712 q^{-27} +1682 q^{-28} +1562 q^{-29} +675 q^{-30} -504 q^{-31} -1844 q^{-32} -1981 q^{-33} -1089 q^{-34} +285 q^{-35} +1939 q^{-36} +2297 q^{-37} +1475 q^{-38} -13 q^{-39} -1953 q^{-40} -2551 q^{-41} -1826 q^{-42} -250 q^{-43} +1927 q^{-44} +2743 q^{-45} +2094 q^{-46} +476 q^{-47} -1871 q^{-48} -2851 q^{-49} -2301 q^{-50} -679 q^{-51} +1813 q^{-52} +2931 q^{-53} +2444 q^{-54} +813 q^{-55} -1752 q^{-56} -2956 q^{-57} -2540 q^{-58} -929 q^{-59} +1698 q^{-60} +2977 q^{-61} +2596 q^{-62} +1002 q^{-63} -1642 q^{-64} -2961 q^{-65} -2633 q^{-66} -1077 q^{-67} +1584 q^{-68} +2941 q^{-69} +2651 q^{-70} +1128 q^{-71} -1499 q^{-72} -2878 q^{-73} -2659 q^{-74} -1210 q^{-75} +1391 q^{-76} +2805 q^{-77} +2640 q^{-78} +1273 q^{-79} -1227 q^{-80} -2653 q^{-81} -2606 q^{-82} -1387 q^{-83} +1031 q^{-84} +2475 q^{-85} +2521 q^{-86} +1464 q^{-87} -767 q^{-88} -2190 q^{-89} -2400 q^{-90} -1567 q^{-91} +474 q^{-92} +1873 q^{-93} +2206 q^{-94} +1607 q^{-95} -159 q^{-96} -1474 q^{-97} -1937 q^{-98} -1616 q^{-99} -146 q^{-100} +1059 q^{-101} +1615 q^{-102} +1539 q^{-103} +383 q^{-104} -637 q^{-105} -1234 q^{-106} -1378 q^{-107} -559 q^{-108} +265 q^{-109} +846 q^{-110} +1153 q^{-111} +623 q^{-112} +17 q^{-113} -481 q^{-114} -873 q^{-115} -583 q^{-116} -209 q^{-117} +176 q^{-118} +596 q^{-119} +480 q^{-120} +280 q^{-121} +25 q^{-122} -338 q^{-123} -327 q^{-124} -269 q^{-125} -145 q^{-126} +152 q^{-127} +181 q^{-128} +201 q^{-129} +176 q^{-130} -34 q^{-131} -65 q^{-132} -122 q^{-133} -144 q^{-134} -17 q^{-135} -16 q^{-136} +43 q^{-137} +111 q^{-138} +35 q^{-139} +31 q^{-140} -6 q^{-141} -52 q^{-142} -10 q^{-143} -50 q^{-144} -26 q^{-145} +34 q^{-146} +10 q^{-147} +27 q^{-148} +12 q^{-149} -7 q^{-150} +14 q^{-151} -19 q^{-152} -24 q^{-153} +5 q^{-154} -2 q^{-155} +10 q^{-156} +3 q^{-157} -5 q^{-158} +13 q^{-159} -2 q^{-160} -8 q^{-161} -2 q^{-163} +4 q^{-164} -5 q^{-166} +4 q^{-167} +2 q^{-168} -2 q^{-169} - q^{-171} +2 q^{-172} -2 q^{-174} + q^{-175} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 47: | Line 81: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[8, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 6]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[5, 14, 6, 15], X[7, 16, 8, 1], X[15, 6, 16, 7], X[13, 8, 14, 9]]</nowiki></pre></td></tr> |
X[5, 14, 6, 15], X[7, 16, 8, 1], X[15, 6, 16, 7], X[13, 8, 14, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 6]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 14, 16, 12, 2, 8, 6]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -1, -2, 1, 3, -2, 3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -1, -2, 1, 3, -2, 3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 6]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 6]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 6]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_6_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 6]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 6}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 6]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6 2 |
|||
-7 - -- + - + 6 t - 2 t |
-7 - -- + - + 6 t - 2 t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 6]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 6]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 - 2 z - 2 z</nowiki></pre></td></tr> |
1 - 2 z - 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 6], Knot[11, NonAlternating, 20], |
|||
Knot[11, NonAlternating, 151], Knot[11, NonAlternating, 152]}</nowiki></pre></td></tr> |
Knot[11, NonAlternating, 151], Knot[11, NonAlternating, 152]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 6]], KnotSignature[Knot[8, 6]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 6]], KnotSignature[Knot[8, 6]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{23, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 3 4 4 4 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 6]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 3 4 4 4 3 |
|||
-1 + q - -- + -- - -- + -- - -- + - + q |
-1 + q - -- + -- - -- + -- - -- + - + q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></pre></td></tr> |
q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 6]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 6]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 6]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -16 -14 -10 -8 -4 2 2 4 |
|||
1 + q + q - q - q - q - q + -- + q + q |
1 + q + q - q - q - q - q + -- + q + q |
||
2 |
2 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 6]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 6]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 2 4 2 6 2 2 4 4 4 |
|||
2 - a - a + a + z - 2 a z - 2 a z + a z - a z - a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 6]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 2 2 2 |
|||
2 + a - a - a - a z - 3 a z - a z + a z - 3 z - 2 a z + |
2 + a - a - a - a z - 3 a z - a z + a z - 3 z - 2 a z + |
||
Line 97: | Line 157: | ||
2 6 4 6 6 6 3 7 5 7 |
2 6 4 6 6 6 3 7 5 7 |
||
a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 6]], Vassiliev[3][Knot[8, 6]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 6]], Vassiliev[3][Knot[8, 6]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 3}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 1 1 1 2 1 2 2 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 6]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 1 1 1 2 1 2 2 |
|||
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
||
Line 109: | Line 171: | ||
7 2 5 2 5 3 q |
7 2 5 2 5 3 q |
||
q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 6], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 2 5 6 3 12 8 8 19 9 12 |
|||
-4 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - -- + |
|||
19 17 16 15 14 13 12 11 10 9 |
|||
q q q q q q q q q q |
|||
21 8 12 17 4 9 9 1 3 4 |
|||
-- - -- - -- + -- - -- - -- + -- - - + 3 q - q + q |
|||
8 7 6 5 4 3 2 q |
|||
q q q q q q q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:06, 29 August 2005
|
|
Visit 8 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 8 6's page at Knotilus! Visit 8 6's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X5,14,6,15 X7,16,8,1 X15,6,16,7 X13,8,14,9 |
Gauss code | -1, 4, -3, 1, -5, 7, -6, 8, -2, 3, -4, 2, -8, 5, -7, 6 |
Dowker-Thistlethwaite code | 4 10 14 16 12 2 8 6 |
Conway Notation | [332] |
Length is 9, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 6"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 23, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n20, K11n151, K11n152, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-2, 3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.