10 146: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 16: Line 16:


{{Knot Presentations}}
{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>

[[Invariants from Braid Theory|Length]] is 11, width is 4.

[[Invariants from Braid Theory|Braid index]] is 4.
</td>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{3D Invariants}}
{{4D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[K11n18]], [[K11n62]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


Line 40: Line 71:
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table>}}

{{Display Coloured Jones|J2=<math>-2 q^8+3 q^7+3 q^6-11 q^5+8 q^4+12 q^3-25 q^2+8 q+24-33 q^{-1} +4 q^{-2} +30 q^{-3} -29 q^{-4} -2 q^{-5} +28 q^{-6} -19 q^{-7} -9 q^{-8} +20 q^{-9} -7 q^{-10} -9 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} </math>|J3=<math>q^{19}-q^{18}-q^{17}-3 q^{16}+4 q^{15}+8 q^{14}-3 q^{13}-17 q^{12}-5 q^{11}+33 q^{10}+15 q^9-42 q^8-38 q^7+53 q^6+59 q^5-52 q^4-86 q^3+53 q^2+99 q-39-116 q^{-1} +33 q^{-2} +118 q^{-3} -19 q^{-4} -117 q^{-5} +7 q^{-6} +110 q^{-7} +7 q^{-8} -99 q^{-9} -22 q^{-10} +83 q^{-11} +36 q^{-12} -64 q^{-13} -44 q^{-14} +40 q^{-15} +50 q^{-16} -20 q^{-17} -45 q^{-18} +2 q^{-19} +35 q^{-20} +8 q^{-21} -22 q^{-22} -13 q^{-23} +13 q^{-24} +9 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math>|J4=<math>-q^{32}+q^{31}+3 q^{30}-2 q^{28}-10 q^{27}-5 q^{26}+16 q^{25}+18 q^{24}+13 q^{23}-36 q^{22}-57 q^{21}+11 q^{20}+64 q^{19}+99 q^{18}-30 q^{17}-169 q^{16}-81 q^{15}+76 q^{14}+262 q^{13}+85 q^{12}-265 q^{11}-257 q^{10}-20 q^9+415 q^8+286 q^7-271 q^6-413 q^5-187 q^4+475 q^3+459 q^2-204 q-472-335 q^{-1} +450 q^{-2} +543 q^{-3} -126 q^{-4} -450 q^{-5} -415 q^{-6} +381 q^{-7} +544 q^{-8} -49 q^{-9} -372 q^{-10} -448 q^{-11} +267 q^{-12} +489 q^{-13} +47 q^{-14} -242 q^{-15} -444 q^{-16} +109 q^{-17} +367 q^{-18} +135 q^{-19} -64 q^{-20} -371 q^{-21} -41 q^{-22} +183 q^{-23} +149 q^{-24} +96 q^{-25} -217 q^{-26} -101 q^{-27} +12 q^{-28} +73 q^{-29} +149 q^{-30} -63 q^{-31} -58 q^{-32} -55 q^{-33} -15 q^{-34} +95 q^{-35} +8 q^{-36} + q^{-37} -36 q^{-38} -36 q^{-39} +31 q^{-40} +8 q^{-41} +14 q^{-42} -6 q^{-43} -16 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math>|J5=<math>-2 q^{46}+5 q^{44}+5 q^{43}-5 q^{41}-22 q^{40}-17 q^{39}+15 q^{38}+45 q^{37}+49 q^{36}+12 q^{35}-76 q^{34}-134 q^{33}-71 q^{32}+90 q^{31}+239 q^{30}+211 q^{29}-37 q^{28}-358 q^{27}-443 q^{26}-104 q^{25}+444 q^{24}+713 q^{23}+383 q^{22}-417 q^{21}-1034 q^{20}-774 q^{19}+299 q^{18}+1271 q^{17}+1238 q^{16}-9 q^{15}-1457 q^{14}-1706 q^{13}-348 q^{12}+1497 q^{11}+2121 q^{10}+774 q^9-1458 q^8-2435 q^7-1150 q^6+1296 q^5+2649 q^4+1503 q^3-1150 q^2-2744 q-1730+942 q^{-1} +2762 q^{-2} +1932 q^{-3} -798 q^{-4} -2730 q^{-5} -2016 q^{-6} +627 q^{-7} +2647 q^{-8} +2093 q^{-9} -474 q^{-10} -2542 q^{-11} -2118 q^{-12} +303 q^{-13} +2370 q^{-14} +2138 q^{-15} -92 q^{-16} -2159 q^{-17} -2122 q^{-18} -146 q^{-19} +1864 q^{-20} +2067 q^{-21} +410 q^{-22} -1501 q^{-23} -1946 q^{-24} -663 q^{-25} +1081 q^{-26} +1737 q^{-27} +859 q^{-28} -633 q^{-29} -1428 q^{-30} -974 q^{-31} +215 q^{-32} +1063 q^{-33} +946 q^{-34} +127 q^{-35} -658 q^{-36} -816 q^{-37} -339 q^{-38} +298 q^{-39} +586 q^{-40} +418 q^{-41} -20 q^{-42} -349 q^{-43} -360 q^{-44} -142 q^{-45} +125 q^{-46} +255 q^{-47} +190 q^{-48} +11 q^{-49} -125 q^{-50} -150 q^{-51} -88 q^{-52} +25 q^{-53} +101 q^{-54} +89 q^{-55} +18 q^{-56} -35 q^{-57} -60 q^{-58} -47 q^{-59} +9 q^{-60} +36 q^{-61} +29 q^{-62} +6 q^{-63} -8 q^{-64} -18 q^{-65} -14 q^{-66} +6 q^{-67} +9 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{68}-q^{67}-q^{66}-2 q^{63}-3 q^{62}+10 q^{61}+8 q^{60}+5 q^{59}+2 q^{58}-11 q^{57}-36 q^{56}-51 q^{55}+2 q^{54}+52 q^{53}+90 q^{52}+114 q^{51}+60 q^{50}-114 q^{49}-288 q^{48}-262 q^{47}-84 q^{46}+205 q^{45}+546 q^{44}+645 q^{43}+206 q^{42}-547 q^{41}-1049 q^{40}-1041 q^{39}-388 q^{38}+915 q^{37}+1991 q^{36}+1786 q^{35}+248 q^{34}-1692 q^{33}-2968 q^{32}-2693 q^{31}-157 q^{30}+3089 q^{29}+4578 q^{28}+3112 q^{27}-593 q^{26}-4539 q^{25}-6351 q^{24}-3522 q^{23}+2249 q^{22}+6962 q^{21}+7300 q^{20}+2819 q^{19}-4116 q^{18}-9482 q^{17}-8029 q^{16}-769 q^{15}+7388 q^{14}+10770 q^{13}+7097 q^{12}-1757 q^{11}-10661 q^{10}-11619 q^9-4382 q^8+6077 q^7+12288 q^6+10342 q^5+1019 q^4-10185 q^3-13327 q^2-7014 q+4337+12253 q^{-1} +11916 q^{-2} +3013 q^{-3} -9143 q^{-4} -13633 q^{-5} -8352 q^{-6} +2987 q^{-7} +11590 q^{-8} +12374 q^{-9} +4174 q^{-10} -8078 q^{-11} -13313 q^{-12} -8999 q^{-13} +1882 q^{-14} +10654 q^{-15} +12370 q^{-16} +5123 q^{-17} -6725 q^{-18} -12568 q^{-19} -9519 q^{-20} +396 q^{-21} +9107 q^{-22} +12003 q^{-23} +6335 q^{-24} -4511 q^{-25} -11000 q^{-26} -9870 q^{-27} -1796 q^{-28} +6409 q^{-29} +10771 q^{-30} +7563 q^{-31} -1310 q^{-32} -8082 q^{-33} -9319 q^{-34} -4130 q^{-35} +2602 q^{-36} +8045 q^{-37} +7763 q^{-38} +1982 q^{-39} -3984 q^{-40} -7074 q^{-41} -5221 q^{-42} -1130 q^{-43} +4071 q^{-44} +6014 q^{-45} +3720 q^{-46} -115 q^{-47} -3501 q^{-48} -4123 q^{-49} -3012 q^{-50} +447 q^{-51} +2891 q^{-52} +3087 q^{-53} +1745 q^{-54} -378 q^{-55} -1682 q^{-56} -2487 q^{-57} -1152 q^{-58} +302 q^{-59} +1223 q^{-60} +1377 q^{-61} +814 q^{-62} +165 q^{-63} -955 q^{-64} -843 q^{-65} -547 q^{-66} -48 q^{-67} +313 q^{-68} +497 q^{-69} +567 q^{-70} -28 q^{-71} -124 q^{-72} -285 q^{-73} -232 q^{-74} -181 q^{-75} +16 q^{-76} +262 q^{-77} +88 q^{-78} +123 q^{-79} - q^{-80} -38 q^{-81} -141 q^{-82} -96 q^{-83} +45 q^{-84} -2 q^{-85} +63 q^{-86} +39 q^{-87} +38 q^{-88} -36 q^{-89} -40 q^{-90} + q^{-91} -20 q^{-92} +9 q^{-93} +9 q^{-94} +23 q^{-95} -6 q^{-96} -9 q^{-97} +4 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math>|J7=Not Available}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 47: Line 81:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[5, 18, 6, 19], X[8, 3, 9, 4], X[2, 9, 3, 10],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[5, 18, 6, 19], X[8, 3, 9, 4], X[2, 9, 3, 10],
X[11, 17, 12, 16], X[7, 12, 8, 13], X[15, 6, 16, 7],
X[11, 17, 12, 16], X[7, 12, 8, 13], X[15, 6, 16, 7],
X[17, 11, 18, 10], X[13, 1, 14, 20], X[19, 15, 20, 14]]</nowiki></pre></td></tr>
X[17, 11, 18, 10], X[13, 1, 14, 20], X[19, 15, 20, 14]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8,
2, -10, 9]</nowiki></pre></td></tr>
2, -10, 9]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -18, -12, 2, -16, -20, -6, -10, -14]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, 2, 1, -3, 2, -1, 2, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, 2, 1, -3, 2, -1, 2, -3}]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 146]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 146]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 146]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_146_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 146]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, NotAvailable, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 146]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 8 2
13 + -- - - - 8 t + 2 t
13 + -- - - - 8 t + 2 t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 146]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 146]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4
1 + 2 z</nowiki></pre></td></tr>
1 + 2 z</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 146], Knot[11, NonAlternating, 18],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 146], Knot[11, NonAlternating, 18],
Knot[11, NonAlternating, 62]}</nowiki></pre></td></tr>
Knot[11, NonAlternating, 62]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 146]], KnotSignature[Knot[10, 146]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 146]], KnotSignature[Knot[10, 146]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 146]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{33, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 4 5 6 2 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 146]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 4 5 6 2 3
6 - q + -- - -- + -- - - - 4 q + 3 q - q
6 - q + -- - -- + -- - - - 4 q + 3 q - q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 146]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 146]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 146]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -14 -12 -10 -8 -6 -2 2 4 6 8 10
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 146]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -14 -12 -10 -8 -6 -2 2 4 6 8 10
-q + q + q - q + q - q + q + 2 q - q + q + q - q</nowiki></pre></td></tr>
-q + q + q - q + q - q + q + 2 q - q + q + q - q</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 146]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 146]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
2 z 2 2 4 2 4 2 4
1 + z - -- + a z - a z + z + a z
2
a</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 146]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3
z 3 z 3 2 3 z 2 2 4 2 z
z 3 z 3 2 3 z 2 2 4 2 z
1 - -- - --- - 3 a z - a z - 3 z - ---- + 3 a z + 3 a z + -- +
1 - -- - --- - 3 a z - a z - 3 z - ---- + 3 a z + 3 a z + -- +
Line 109: Line 172:
-- + 4 a z + 3 a z + z + a z
-- + 4 a z + 3 a z + z + a z
a</nowiki></pre></td></tr>
a</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 146]], Vassiliev[3][Knot[10, 146]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 146]], Vassiliev[3][Knot[10, 146]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 146]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 2 1 2 2 3 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 146]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 2 1 2 2 3 2
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 121: Line 186:
3 q t
3 q t
q t</nowiki></pre></td></tr>
q t</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 146], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 3 9 9 7 20 9 19 28 2 29 30
24 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- +
14 12 11 10 9 8 7 6 5 4 3
q q q q q q q q q q q
4 33 2 3 4 5 6 7 8
-- - -- + 8 q - 25 q + 12 q + 8 q - 11 q + 3 q + 3 q - 2 q
2 q
q</nowiki></pre></td></tr>

</table>
</table>

See/edit the [[Rolfsen_Splice_Template]].


[[Category:Knot Page]]
[[Category:Knot Page]]

Revision as of 17:25, 29 August 2005

10 145.gif

10_145

10 147.gif

10_147

10 146.gif Visit 10 146's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 146's page at Knotilus!

Visit 10 146's page at the original Knot Atlas!

10 146 Quick Notes


10 146 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X5,18,6,19 X8394 X2,9,3,10 X11,17,12,16 X7,12,8,13 X15,6,16,7 X17,11,18,10 X13,1,14,20 X19,15,20,14
Gauss code 1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8, 2, -10, 9
Dowker-Thistlethwaite code 4 8 -18 -12 2 -16 -20 -6 -10 -14
Conway Notation [22,21,21-]

Minimum Braid Representative:

BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4.

Braid index is 4.

A Morse Link Presentation:

10 146 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-4]
Hyperbolic Volume 10.561
A-Polynomial See Data:10 146/A-polynomial

[edit Notes for 10 146's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 146's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 33, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n18, K11n62, ...}

Same Jones Polynomial (up to mirroring, ): {...}

Vassiliev invariants

V2 and V3: (0, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123χ
7        1-1
5       2 2
3      21 -1
1     42  2
-1    33   0
-3   23    -1
-5  23     1
-7 12      -1
-9 2       2
-111        -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials