In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[7, 4]] |
Out[2]= | PD[X[6, 2, 7, 1], X[12, 6, 13, 5], X[14, 8, 1, 7], X[8, 14, 9, 13],
X[2, 12, 3, 11], X[10, 4, 11, 3], X[4, 10, 5, 9]] |
In[3]:= | GaussCode[Knot[7, 4]] |
Out[3]= | GaussCode[1, -5, 6, -7, 2, -1, 3, -4, 7, -6, 5, -2, 4, -3] |
In[4]:= | DTCode[Knot[7, 4]] |
Out[4]= | DTCode[6, 10, 12, 14, 4, 2, 8] |
In[5]:= | br = BR[Knot[7, 4]] |
Out[5]= | BR[4, {1, 1, 2, -1, 2, 2, 3, -2, 3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 9} |
In[7]:= | BraidIndex[Knot[7, 4]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[7, 4]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[7, 4]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 1, 2, {3, 4}, 1} |
In[10]:= | alex = Alexander[Knot[7, 4]][t] |
Out[10]= | 4
-7 + - + 4 t
t |
In[11]:= | Conway[Knot[7, 4]][z] |
Out[11]= | 2
1 + 4 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 4], Knot[9, 2]} |
In[13]:= | {KnotDet[Knot[7, 4]], KnotSignature[Knot[7, 4]]} |
Out[13]= | {15, 2} |
In[14]:= | Jones[Knot[7, 4]][q] |
Out[14]= | 2 3 4 5 6 7 8
q - 2 q + 3 q - 2 q + 3 q - 2 q + q - q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 4]} |
In[16]:= | A2Invariant[Knot[7, 4]][q] |
Out[16]= | 2 4 8 10 12 14 16 20 24 26
q - q + q + q + 2 q + q + q - q - q - q |
In[17]:= | HOMFLYPT[Knot[7, 4]][a, z] |
Out[17]= | 2 2 2
-8 2 z 2 z z
-a + -- + -- + ---- + --
4 6 4 2
a a a a |
In[18]:= | Kauffman[Knot[7, 4]][a, z] |
Out[18]= | 2 2 2 2 3 3 3
-8 2 4 z 4 z 2 z 3 z 4 z z 4 z 8 z 2 z
-a + -- + --- + --- + ---- - ---- - ---- + -- - ---- - ---- - ---- +
4 9 7 8 6 4 2 9 7 5
a a a a a a a a a a
3 4 4 5 5 5 6 6
2 z 3 z 3 z z 3 z 2 z z z
---- - ---- + ---- + -- + ---- + ---- + -- + --
3 8 4 9 7 5 8 6
a a a a a a a a |
In[19]:= | {Vassiliev[2][Knot[7, 4]], Vassiliev[3][Knot[7, 4]]} |
Out[19]= | {4, 8} |
In[20]:= | Kh[Knot[7, 4]][q, t] |
Out[20]= | 3 3 5 2 7 2 7 3 9 3 9 4 11 4
q + q + 2 q t + q t + 2 q t + q t + q t + 2 q t + q t +
13 5 13 6 17 7
2 q t + q t + q t |
In[21]:= | ColouredJones[Knot[7, 4], 2][q] |
Out[21]= | 2 3 4 5 6 7 8 9 10 11
q - 2 q + q + 4 q - 6 q + 2 q + 6 q - 9 q + 3 q + 7 q -
12 13 14 15 16 17 18 19 20
8 q + q + 7 q - 7 q - q + 5 q - 4 q - q + 3 q -
21 22 23
q - q + q |