9 1: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- --> |
|||
k = 1 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,6,-2,7,-3,8,-4,9,-5,1,-6,2,-7,3,-8,4,-9,5/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=9|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,6,-2,7,-3,8,-4,9,-5,1,-6,2,-7,3,-8,4,-9,5/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 9 | |
|||
braid_width = 2 | |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 2. |
|||
braid_index = 2 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 2. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
Line 70: | Line 34: | ||
<tr align=center><td>-25</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-25</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-27</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-27</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math> q^{-8} + q^{-11} - q^{-13} + q^{-14} - q^{-16} + q^{-17} - q^{-19} + q^{-20} - q^{-22} + q^{-23} - q^{-25} + q^{-26} - q^{-27} - q^{-28} + q^{-29} - q^{-31} + q^{-32} - q^{-34} + q^{-35} </math> | |
|||
coloured_jones_3 = <math> q^{-12} + q^{-16} - q^{-19} + q^{-20} - q^{-23} + q^{-24} - q^{-27} + q^{-28} - q^{-31} + q^{-32} - q^{-35} + q^{-36} - q^{-39} - q^{-43} + q^{-45} - q^{-47} + q^{-49} - q^{-51} + q^{-53} - q^{-55} + q^{-57} + q^{-61} - q^{-62} + q^{-65} - q^{-66} </math> | |
|||
{{Display Coloured Jones|J2=<math> q^{-8} + q^{-11} - q^{-13} + q^{-14} - q^{-16} + q^{-17} - q^{-19} + q^{-20} - q^{-22} + q^{-23} - q^{-25} + q^{-26} - q^{-27} - q^{-28} + q^{-29} - q^{-31} + q^{-32} - q^{-34} + q^{-35} </math>|J3=<math> q^{-12} + q^{-16} - q^{-19} + q^{-20} - q^{-23} + q^{-24} - q^{-27} + q^{-28} - q^{-31} + q^{-32} - q^{-35} + q^{-36} - q^{-39} - q^{-43} + q^{-45} - q^{-47} + q^{-49} - q^{-51} + q^{-53} - q^{-55} + q^{-57} + q^{-61} - q^{-62} + q^{-65} - q^{-66} </math>|J4=<math> q^{-16} + q^{-21} - q^{-25} + q^{-26} - q^{-30} + q^{-31} - q^{-35} + q^{-36} - q^{-40} + q^{-41} - q^{-45} + q^{-46} - q^{-50} + q^{-51} - q^{-53} - q^{-55} + q^{-56} - q^{-58} + q^{-61} - q^{-63} + q^{-66} - q^{-68} + q^{-71} - q^{-73} + q^{-76} - q^{-78} +2 q^{-81} - q^{-83} + q^{-86} - q^{-88} + q^{-91} - q^{-93} + q^{-96} - q^{-98} - q^{-100} + q^{-101} - q^{-105} + q^{-106} </math>|J5=<math> q^{-20} + q^{-26} - q^{-31} + q^{-32} - q^{-37} + q^{-38} - q^{-43} + q^{-44} - q^{-49} + q^{-50} - q^{-55} + q^{-56} - q^{-61} + q^{-62} - q^{-66} - q^{-67} + q^{-68} - q^{-72} - q^{-73} + q^{-74} + q^{-75} - q^{-78} - q^{-79} + q^{-80} + q^{-81} - q^{-84} - q^{-85} + q^{-86} + q^{-87} - q^{-90} - q^{-91} + q^{-92} + q^{-93} - q^{-96} - q^{-97} + q^{-98} + q^{-99} - q^{-102} + q^{-104} + q^{-105} - q^{-108} + q^{-111} - q^{-114} + q^{-117} - q^{-120} + q^{-123} - q^{-126} + q^{-129} - q^{-131} - q^{-132} + q^{-135} + q^{-136} - q^{-137} - q^{-138} + q^{-141} + q^{-142} - q^{-143} - q^{-144} + q^{-147} + q^{-148} - q^{-149} + q^{-154} - q^{-155} </math>|J6=<math> q^{-24} + q^{-31} - q^{-37} + q^{-38} - q^{-44} + q^{-45} - q^{-51} + q^{-52} - q^{-58} + q^{-59} - q^{-65} + q^{-66} - q^{-72} + q^{-73} -2 q^{-79} + q^{-80} -2 q^{-86} + q^{-87} + q^{-90} -2 q^{-93} + q^{-94} + q^{-97} -2 q^{-100} + q^{-101} + q^{-104} -2 q^{-107} + q^{-108} + q^{-111} -2 q^{-114} + q^{-115} + q^{-118} -2 q^{-121} + q^{-122} +2 q^{-125} -2 q^{-128} + q^{-129} +2 q^{-132} - q^{-134} -2 q^{-135} + q^{-136} +2 q^{-139} - q^{-141} -2 q^{-142} + q^{-143} +2 q^{-146} - q^{-148} -2 q^{-149} + q^{-150} +2 q^{-153} - q^{-155} -2 q^{-156} + q^{-157} +2 q^{-160} -2 q^{-162} -2 q^{-163} + q^{-164} +2 q^{-167} - q^{-169} -2 q^{-170} + q^{-171} +2 q^{-174} - q^{-176} -2 q^{-177} + q^{-178} +2 q^{-181} - q^{-183} -2 q^{-184} + q^{-185} +2 q^{-188} -2 q^{-191} + q^{-192} + q^{-195} -2 q^{-198} + q^{-199} + q^{-202} -2 q^{-205} + q^{-206} - q^{-212} + q^{-213} </math>|J7=<math> q^{-28} + q^{-36} - q^{-43} + q^{-44} - q^{-51} + q^{-52} - q^{-59} + q^{-60} - q^{-67} + q^{-68} - q^{-75} + q^{-76} - q^{-83} + q^{-84} - q^{-91} - q^{-99} + q^{-105} - q^{-107} + q^{-113} - q^{-115} + q^{-121} - q^{-123} + q^{-129} - q^{-131} + q^{-137} - q^{-139} + q^{-145} + q^{-153} - q^{-158} + q^{-161} - q^{-166} + q^{-169} - q^{-174} + q^{-177} - q^{-182} + q^{-185} - q^{-190} - q^{-198} + q^{-202} - q^{-206} + q^{-210} - q^{-214} + q^{-218} - q^{-222} + q^{-226} + q^{-234} - q^{-237} + q^{-242} - q^{-245} + q^{-250} - q^{-253} - q^{-261} + q^{-263} - q^{-269} + q^{-271} + q^{-279} - q^{-280} </math>}} |
|||
coloured_jones_4 = <math> q^{-16} + q^{-21} - q^{-25} + q^{-26} - q^{-30} + q^{-31} - q^{-35} + q^{-36} - q^{-40} + q^{-41} - q^{-45} + q^{-46} - q^{-50} + q^{-51} - q^{-53} - q^{-55} + q^{-56} - q^{-58} + q^{-61} - q^{-63} + q^{-66} - q^{-68} + q^{-71} - q^{-73} + q^{-76} - q^{-78} +2 q^{-81} - q^{-83} + q^{-86} - q^{-88} + q^{-91} - q^{-93} + q^{-96} - q^{-98} - q^{-100} + q^{-101} - q^{-105} + q^{-106} </math> | |
|||
coloured_jones_5 = <math> q^{-20} + q^{-26} - q^{-31} + q^{-32} - q^{-37} + q^{-38} - q^{-43} + q^{-44} - q^{-49} + q^{-50} - q^{-55} + q^{-56} - q^{-61} + q^{-62} - q^{-66} - q^{-67} + q^{-68} - q^{-72} - q^{-73} + q^{-74} + q^{-75} - q^{-78} - q^{-79} + q^{-80} + q^{-81} - q^{-84} - q^{-85} + q^{-86} + q^{-87} - q^{-90} - q^{-91} + q^{-92} + q^{-93} - q^{-96} - q^{-97} + q^{-98} + q^{-99} - q^{-102} + q^{-104} + q^{-105} - q^{-108} + q^{-111} - q^{-114} + q^{-117} - q^{-120} + q^{-123} - q^{-126} + q^{-129} - q^{-131} - q^{-132} + q^{-135} + q^{-136} - q^{-137} - q^{-138} + q^{-141} + q^{-142} - q^{-143} - q^{-144} + q^{-147} + q^{-148} - q^{-149} + q^{-154} - q^{-155} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math> q^{-24} + q^{-31} - q^{-37} + q^{-38} - q^{-44} + q^{-45} - q^{-51} + q^{-52} - q^{-58} + q^{-59} - q^{-65} + q^{-66} - q^{-72} + q^{-73} -2 q^{-79} + q^{-80} -2 q^{-86} + q^{-87} + q^{-90} -2 q^{-93} + q^{-94} + q^{-97} -2 q^{-100} + q^{-101} + q^{-104} -2 q^{-107} + q^{-108} + q^{-111} -2 q^{-114} + q^{-115} + q^{-118} -2 q^{-121} + q^{-122} +2 q^{-125} -2 q^{-128} + q^{-129} +2 q^{-132} - q^{-134} -2 q^{-135} + q^{-136} +2 q^{-139} - q^{-141} -2 q^{-142} + q^{-143} +2 q^{-146} - q^{-148} -2 q^{-149} + q^{-150} +2 q^{-153} - q^{-155} -2 q^{-156} + q^{-157} +2 q^{-160} -2 q^{-162} -2 q^{-163} + q^{-164} +2 q^{-167} - q^{-169} -2 q^{-170} + q^{-171} +2 q^{-174} - q^{-176} -2 q^{-177} + q^{-178} +2 q^{-181} - q^{-183} -2 q^{-184} + q^{-185} +2 q^{-188} -2 q^{-191} + q^{-192} + q^{-195} -2 q^{-198} + q^{-199} + q^{-202} -2 q^{-205} + q^{-206} - q^{-212} + q^{-213} </math> | |
|||
coloured_jones_7 = <math> q^{-28} + q^{-36} - q^{-43} + q^{-44} - q^{-51} + q^{-52} - q^{-59} + q^{-60} - q^{-67} + q^{-68} - q^{-75} + q^{-76} - q^{-83} + q^{-84} - q^{-91} - q^{-99} + q^{-105} - q^{-107} + q^{-113} - q^{-115} + q^{-121} - q^{-123} + q^{-129} - q^{-131} + q^{-137} - q^{-139} + q^{-145} + q^{-153} - q^{-158} + q^{-161} - q^{-166} + q^{-169} - q^{-174} + q^{-177} - q^{-182} + q^{-185} - q^{-190} - q^{-198} + q^{-202} - q^{-206} + q^{-210} - q^{-214} + q^{-218} - q^{-222} + q^{-226} + q^{-234} - q^{-237} + q^{-242} - q^{-245} + q^{-250} - q^{-253} - q^{-261} + q^{-263} - q^{-269} + q^{-271} + q^{-279} - q^{-280} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 10, 2, 11], X[3, 12, 4, 13], X[5, 14, 6, 15], X[7, 16, 8, 17], |
|||
X[9, 18, 10, 1], X[11, 2, 12, 3], X[13, 4, 14, 5], X[15, 6, 16, 7], |
X[9, 18, 10, 1], X[11, 2, 12, 3], X[13, 4, 14, 5], X[15, 6, 16, 7], |
||
X[17, 8, 18, 9]]</nowiki></pre></td></tr> |
X[17, 8, 18, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 1]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 6, -2, 7, -3, 8, -4, 9, -5, 1, -6, 2, -7, 3, -8, 4, -9, 5]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[10, 12, 14, 16, 18, 2, 4, 6, 8]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {-1, -1, -1, -1, -1, -1, -1, -1, -1}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 9}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 1]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 4, 4, 2, 4, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 1]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 -3 -2 1 2 3 4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 1]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 4, 4, 2, 4, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 1]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 -3 -2 1 2 3 4 |
|||
1 + t - t + t - - - t + t - t + t |
1 + t - t + t - - - t + t - t + t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 1]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 |
|||
1 + 10 z + 15 z + 7 z + z</nowiki></pre></td></tr> |
1 + 10 z + 15 z + 7 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 1]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 1]], KnotSignature[Knot[9, 1]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{9, -8}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 1]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13 -12 -11 -10 -9 -8 -7 -6 -4 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 1]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -13 -12 -11 -10 -9 -8 -7 -6 -4 |
|||
-q + q - q + q - q + q - q + q + q</nowiki></pre></td></tr> |
-q + q - q + q - q + q - q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 1]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 1]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -38 -36 -34 -22 -20 2 -16 -14 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 1]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -38 -36 -34 -22 -20 2 -16 -14 |
|||
-q - q - q + q + q + --- + q + q |
-q - q - q + q + q + --- + q + q |
||
18 |
18 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 1]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 8 2 10 2 8 4 10 4 8 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 8 2 10 2 8 4 10 4 8 6 |
|||
5 a - 4 a + 20 a z - 10 a z + 21 a z - 6 a z + 8 a z - |
5 a - 4 a + 20 a z - 10 a z + 21 a z - 6 a z + 8 a z - |
||
10 6 8 8 |
10 6 8 8 |
||
a z + a z</nowiki></pre></td></tr> |
a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 1]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 9 11 13 15 17 8 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 9 11 13 15 17 8 2 |
|||
5 a + 4 a - 4 a z - a z + a z - a z + a z - 20 a z - |
5 a + 4 a - 4 a z - a z + a z - a z + a z - 20 a z - |
||
Line 160: | Line 109: | ||
11 7 8 8 10 8 |
11 7 8 8 10 8 |
||
a z + a z + a z</nowiki></pre></td></tr> |
a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 1]], Vassiliev[3][Knot[9, 1]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{10, -30}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 1]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 -7 1 1 1 1 1 1 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 1]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 -7 1 1 1 1 1 1 |
|||
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
||
27 9 23 8 23 7 19 6 19 5 15 4 |
27 9 23 8 23 7 19 6 19 5 15 4 |
||
Line 174: | Line 121: | ||
15 3 11 2 |
15 3 11 2 |
||
q t q t</nowiki></pre></td></tr> |
q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 1], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -35 -34 -32 -31 -29 -28 -27 -26 -25 -23 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -35 -34 -32 -31 -29 -28 -27 -26 -25 -23 |
|||
q - q + q - q + q - q - q + q - q + q - |
q - q + q - q + q - q - q + q - q + q - |
||
-22 -20 -19 -17 -16 -14 -13 -11 -8 |
-22 -20 -19 -17 -16 -14 -13 -11 -8 |
||
q + q - q + q - q + q - q + q + q</nowiki></pre></td></tr> |
q + q - q + q - q + q - q + q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:40, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
9_1 should perhaps be called "The Nonafoil Knot", following the trefoil knot, the cinquefoil knot and (maybe) the septafoil knot. The next in the series is K11a367. See also T(9,2). |
Knot presentations
Planar diagram presentation | X1,10,2,11 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X11,2,12,3 X13,4,14,5 X15,6,16,7 X17,8,18,9 |
Gauss code | -1, 6, -2, 7, -3, 8, -4, 9, -5, 1, -6, 2, -7, 3, -8, 4, -9, 5 |
Dowker-Thistlethwaite code | 10 12 14 16 18 2 4 6 8 |
Conway Notation | [9] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||
Length is 9, width is 2, Braid index is 2 |
[{11, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 1}] |
[edit Notes on presentations of 9 1]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 1"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1,10,2,11 X3,12,4,13 X5,14,6,15 X7,16,8,17 X9,18,10,1 X11,2,12,3 X13,4,14,5 X15,6,16,7 X17,8,18,9 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 6, -2, 7, -3, 8, -4, 9, -5, 1, -6, 2, -7, 3, -8, 4, -9, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
10 12 14 16 18 2 4 6 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[9] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 2, 9, 2 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
8 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 9, -8 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 1"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (10, -30) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -8 is the signature of 9 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|