8 21: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 8 |
<!-- -->
k = 21 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,3,-7,-8,2,-5,6,7,-3,-4,5,-6,4/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=8|k=21|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,3,-7,-8,2,-5,6,7,-3,-4,5,-6,4/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 8 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 8, width is 3.
braid_index = 3 |

same_alexander = [[10_136]], |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[10_136]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<td width=18.1818%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=9.09091%>-6</td ><td width=9.09091%>-5</td ><td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=18.1818%>&chi;</td></tr>
<td width=9.09091%>-6</td ><td width=9.09091%>-5</td ><td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=18.1818%>&chi;</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td>2</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td>2</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
Line 68: Line 32:
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-1} +2 q^{-2} -4 q^{-3} + q^{-4} +6 q^{-5} -8 q^{-6} +10 q^{-8} -10 q^{-9} - q^{-10} +10 q^{-11} -8 q^{-12} -2 q^{-13} +8 q^{-14} -4 q^{-15} -3 q^{-16} +5 q^{-17} - q^{-18} -2 q^{-19} + q^{-20} </math> |

coloured_jones_3 = <math>2 q^{-1} -6 q^{-4} +4 q^{-5} +6 q^{-6} -13 q^{-8} + q^{-9} +15 q^{-10} +4 q^{-11} -21 q^{-12} -4 q^{-13} +21 q^{-14} +8 q^{-15} -23 q^{-16} -9 q^{-17} +22 q^{-18} +9 q^{-19} -20 q^{-20} -11 q^{-21} +19 q^{-22} +10 q^{-23} -13 q^{-24} -12 q^{-25} +11 q^{-26} +11 q^{-27} -6 q^{-28} -11 q^{-29} +2 q^{-30} +9 q^{-31} + q^{-32} -7 q^{-33} -2 q^{-34} +4 q^{-35} +2 q^{-36} - q^{-37} -2 q^{-38} + q^{-39} </math> |
{{Display Coloured Jones|J2=<math> q^{-1} +2 q^{-2} -4 q^{-3} + q^{-4} +6 q^{-5} -8 q^{-6} +10 q^{-8} -10 q^{-9} - q^{-10} +10 q^{-11} -8 q^{-12} -2 q^{-13} +8 q^{-14} -4 q^{-15} -3 q^{-16} +5 q^{-17} - q^{-18} -2 q^{-19} + q^{-20} </math>|J3=<math>2 q^{-1} -6 q^{-4} +4 q^{-5} +6 q^{-6} -13 q^{-8} + q^{-9} +15 q^{-10} +4 q^{-11} -21 q^{-12} -4 q^{-13} +21 q^{-14} +8 q^{-15} -23 q^{-16} -9 q^{-17} +22 q^{-18} +9 q^{-19} -20 q^{-20} -11 q^{-21} +19 q^{-22} +10 q^{-23} -13 q^{-24} -12 q^{-25} +11 q^{-26} +11 q^{-27} -6 q^{-28} -11 q^{-29} +2 q^{-30} +9 q^{-31} + q^{-32} -7 q^{-33} -2 q^{-34} +4 q^{-35} +2 q^{-36} - q^{-37} -2 q^{-38} + q^{-39} </math>|J4=<math>1+2 q^{-1} -4 q^{-3} -2 q^{-4} -3 q^{-5} +9 q^{-6} +10 q^{-7} -7 q^{-8} -9 q^{-9} -18 q^{-10} +15 q^{-11} +29 q^{-12} - q^{-13} -14 q^{-14} -44 q^{-15} +12 q^{-16} +48 q^{-17} +12 q^{-18} -13 q^{-19} -66 q^{-20} +4 q^{-21} +57 q^{-22} +22 q^{-23} -6 q^{-24} -77 q^{-25} -2 q^{-26} +58 q^{-27} +25 q^{-28} -76 q^{-30} -5 q^{-31} +51 q^{-32} +25 q^{-33} +7 q^{-34} -67 q^{-35} -10 q^{-36} +37 q^{-37} +23 q^{-38} +16 q^{-39} -52 q^{-40} -15 q^{-41} +17 q^{-42} +18 q^{-43} +26 q^{-44} -31 q^{-45} -15 q^{-46} - q^{-47} +7 q^{-48} +27 q^{-49} -10 q^{-50} -8 q^{-51} -9 q^{-52} -4 q^{-53} +17 q^{-54} -5 q^{-57} -6 q^{-58} +5 q^{-59} + q^{-60} +2 q^{-61} - q^{-62} -2 q^{-63} + q^{-64} </math>|J5=<math>2 q+2 q^{-1} -2 q^{-2} -6 q^{-3} -6 q^{-4} +6 q^{-5} +4 q^{-6} +14 q^{-7} +9 q^{-8} -17 q^{-9} -25 q^{-10} -10 q^{-11} +5 q^{-12} +37 q^{-13} +43 q^{-14} -7 q^{-15} -52 q^{-16} -53 q^{-17} -20 q^{-18} +57 q^{-19} +91 q^{-20} +31 q^{-21} -60 q^{-22} -106 q^{-23} -61 q^{-24} +55 q^{-25} +132 q^{-26} +76 q^{-27} -51 q^{-28} -136 q^{-29} -101 q^{-30} +43 q^{-31} +150 q^{-32} +107 q^{-33} -36 q^{-34} -146 q^{-35} -119 q^{-36} +29 q^{-37} +150 q^{-38} +120 q^{-39} -25 q^{-40} -145 q^{-41} -120 q^{-42} +20 q^{-43} +138 q^{-44} +121 q^{-45} -15 q^{-46} -133 q^{-47} -113 q^{-48} +7 q^{-49} +115 q^{-50} +115 q^{-51} +2 q^{-52} -105 q^{-53} -104 q^{-54} -14 q^{-55} +80 q^{-56} +101 q^{-57} +28 q^{-58} -64 q^{-59} -85 q^{-60} -38 q^{-61} +35 q^{-62} +75 q^{-63} +44 q^{-64} -14 q^{-65} -53 q^{-66} -46 q^{-67} -6 q^{-68} +34 q^{-69} +40 q^{-70} +17 q^{-71} -13 q^{-72} -30 q^{-73} -23 q^{-74} -2 q^{-75} +19 q^{-76} +20 q^{-77} +8 q^{-78} -4 q^{-79} -15 q^{-80} -12 q^{-81} +8 q^{-83} +7 q^{-84} +4 q^{-85} -7 q^{-87} -4 q^{-88} + q^{-89} +2 q^{-90} + q^{-91} +2 q^{-92} - q^{-93} -2 q^{-94} + q^{-95} </math>|J6=<math>q^3+2 q^2-2 q^{-1} -4 q^{-2} -8 q^{-3} -3 q^{-4} +9 q^{-5} +16 q^{-6} +11 q^{-7} +6 q^{-8} -5 q^{-9} -38 q^{-10} -34 q^{-11} -9 q^{-12} +34 q^{-13} +49 q^{-14} +54 q^{-15} +35 q^{-16} -65 q^{-17} -104 q^{-18} -86 q^{-19} +5 q^{-20} +75 q^{-21} +147 q^{-22} +146 q^{-23} -36 q^{-24} -165 q^{-25} -211 q^{-26} -90 q^{-27} +46 q^{-28} +229 q^{-29} +295 q^{-30} +52 q^{-31} -173 q^{-32} -320 q^{-33} -209 q^{-34} -30 q^{-35} +263 q^{-36} +414 q^{-37} +151 q^{-38} -140 q^{-39} -377 q^{-40} -292 q^{-41} -109 q^{-42} +258 q^{-43} +473 q^{-44} +215 q^{-45} -100 q^{-46} -390 q^{-47} -324 q^{-48} -160 q^{-49} +239 q^{-50} +488 q^{-51} +241 q^{-52} -75 q^{-53} -382 q^{-54} -326 q^{-55} -182 q^{-56} +221 q^{-57} +477 q^{-58} +247 q^{-59} -58 q^{-60} -360 q^{-61} -313 q^{-62} -192 q^{-63} +193 q^{-64} +443 q^{-65} +247 q^{-66} -30 q^{-67} -315 q^{-68} -288 q^{-69} -208 q^{-70} +140 q^{-71} +379 q^{-72} +245 q^{-73} +23 q^{-74} -234 q^{-75} -244 q^{-76} -231 q^{-77} +56 q^{-78} +281 q^{-79} +228 q^{-80} +86 q^{-81} -120 q^{-82} -170 q^{-83} -235 q^{-84} -35 q^{-85} +152 q^{-86} +174 q^{-87} +121 q^{-88} -7 q^{-89} -65 q^{-90} -190 q^{-91} -86 q^{-92} +29 q^{-93} +84 q^{-94} +98 q^{-95} +54 q^{-96} +30 q^{-97} -100 q^{-98} -72 q^{-99} -35 q^{-100} +4 q^{-101} +33 q^{-102} +46 q^{-103} +64 q^{-104} -22 q^{-105} -22 q^{-106} -32 q^{-107} -21 q^{-108} -14 q^{-109} +7 q^{-110} +43 q^{-111} +4 q^{-112} +8 q^{-113} -6 q^{-114} -8 q^{-115} -17 q^{-116} -10 q^{-117} +13 q^{-118} + q^{-119} +8 q^{-120} +3 q^{-121} +3 q^{-122} -7 q^{-123} -6 q^{-124} +3 q^{-125} -2 q^{-126} +2 q^{-127} + q^{-128} +2 q^{-129} - q^{-130} -2 q^{-131} + q^{-132} </math>|J7=<math>2 q^5+2 q^3-2 q-6-4 q^{-1} -6 q^{-2} +4 q^{-4} +16 q^{-5} +24 q^{-6} +15 q^{-7} -9 q^{-8} -23 q^{-9} -37 q^{-10} -45 q^{-11} -25 q^{-12} +17 q^{-13} +81 q^{-14} +98 q^{-15} +55 q^{-16} +8 q^{-17} -74 q^{-18} -151 q^{-19} -161 q^{-20} -87 q^{-21} +83 q^{-22} +223 q^{-23} +236 q^{-24} +188 q^{-25} +3 q^{-26} -240 q^{-27} -376 q^{-28} -357 q^{-29} -83 q^{-30} +249 q^{-31} +454 q^{-32} +510 q^{-33} +257 q^{-34} -187 q^{-35} -546 q^{-36} -691 q^{-37} -415 q^{-38} +115 q^{-39} +563 q^{-40} +832 q^{-41} +601 q^{-42} +6 q^{-43} -578 q^{-44} -954 q^{-45} -745 q^{-46} -115 q^{-47} +541 q^{-48} +1023 q^{-49} +886 q^{-50} +224 q^{-51} -512 q^{-52} -1072 q^{-53} -964 q^{-54} -303 q^{-55} +451 q^{-56} +1086 q^{-57} +1036 q^{-58} +372 q^{-59} -424 q^{-60} -1093 q^{-61} -1056 q^{-62} -406 q^{-63} +378 q^{-64} +1078 q^{-65} +1082 q^{-66} +436 q^{-67} -359 q^{-68} -1072 q^{-69} -1078 q^{-70} -446 q^{-71} +336 q^{-72} +1051 q^{-73} +1075 q^{-74} +455 q^{-75} -314 q^{-76} -1032 q^{-77} -1068 q^{-78} -461 q^{-79} +299 q^{-80} +1000 q^{-81} +1043 q^{-82} +468 q^{-83} -255 q^{-84} -956 q^{-85} -1032 q^{-86} -482 q^{-87} +220 q^{-88} +897 q^{-89} +985 q^{-90} +499 q^{-91} -139 q^{-92} -812 q^{-93} -954 q^{-94} -527 q^{-95} +70 q^{-96} +711 q^{-97} +879 q^{-98} +546 q^{-99} +40 q^{-100} -572 q^{-101} -813 q^{-102} -564 q^{-103} -136 q^{-104} +432 q^{-105} +694 q^{-106} +552 q^{-107} +245 q^{-108} -268 q^{-109} -572 q^{-110} -524 q^{-111} -311 q^{-112} +113 q^{-113} +415 q^{-114} +454 q^{-115} +361 q^{-116} +24 q^{-117} -269 q^{-118} -352 q^{-119} -353 q^{-120} -123 q^{-121} +117 q^{-122} +236 q^{-123} +315 q^{-124} +173 q^{-125} -7 q^{-126} -119 q^{-127} -232 q^{-128} -178 q^{-129} -65 q^{-130} +15 q^{-131} +146 q^{-132} +147 q^{-133} +92 q^{-134} +45 q^{-135} -69 q^{-136} -87 q^{-137} -78 q^{-138} -78 q^{-139} +3 q^{-140} +44 q^{-141} +56 q^{-142} +69 q^{-143} +14 q^{-144} - q^{-145} -12 q^{-146} -54 q^{-147} -29 q^{-148} -15 q^{-149} +2 q^{-150} +29 q^{-151} +12 q^{-152} +15 q^{-153} +17 q^{-154} -8 q^{-155} -11 q^{-156} -14 q^{-157} -12 q^{-158} +6 q^{-159} - q^{-160} +3 q^{-161} +10 q^{-162} +3 q^{-163} +2 q^{-164} -4 q^{-165} -6 q^{-166} + q^{-167} -2 q^{-169} +2 q^{-170} + q^{-171} +2 q^{-172} - q^{-173} -2 q^{-174} + q^{-175} </math>}}
coloured_jones_4 = <math>1+2 q^{-1} -4 q^{-3} -2 q^{-4} -3 q^{-5} +9 q^{-6} +10 q^{-7} -7 q^{-8} -9 q^{-9} -18 q^{-10} +15 q^{-11} +29 q^{-12} - q^{-13} -14 q^{-14} -44 q^{-15} +12 q^{-16} +48 q^{-17} +12 q^{-18} -13 q^{-19} -66 q^{-20} +4 q^{-21} +57 q^{-22} +22 q^{-23} -6 q^{-24} -77 q^{-25} -2 q^{-26} +58 q^{-27} +25 q^{-28} -76 q^{-30} -5 q^{-31} +51 q^{-32} +25 q^{-33} +7 q^{-34} -67 q^{-35} -10 q^{-36} +37 q^{-37} +23 q^{-38} +16 q^{-39} -52 q^{-40} -15 q^{-41} +17 q^{-42} +18 q^{-43} +26 q^{-44} -31 q^{-45} -15 q^{-46} - q^{-47} +7 q^{-48} +27 q^{-49} -10 q^{-50} -8 q^{-51} -9 q^{-52} -4 q^{-53} +17 q^{-54} -5 q^{-57} -6 q^{-58} +5 q^{-59} + q^{-60} +2 q^{-61} - q^{-62} -2 q^{-63} + q^{-64} </math> |

coloured_jones_5 = <math>2 q+2 q^{-1} -2 q^{-2} -6 q^{-3} -6 q^{-4} +6 q^{-5} +4 q^{-6} +14 q^{-7} +9 q^{-8} -17 q^{-9} -25 q^{-10} -10 q^{-11} +5 q^{-12} +37 q^{-13} +43 q^{-14} -7 q^{-15} -52 q^{-16} -53 q^{-17} -20 q^{-18} +57 q^{-19} +91 q^{-20} +31 q^{-21} -60 q^{-22} -106 q^{-23} -61 q^{-24} +55 q^{-25} +132 q^{-26} +76 q^{-27} -51 q^{-28} -136 q^{-29} -101 q^{-30} +43 q^{-31} +150 q^{-32} +107 q^{-33} -36 q^{-34} -146 q^{-35} -119 q^{-36} +29 q^{-37} +150 q^{-38} +120 q^{-39} -25 q^{-40} -145 q^{-41} -120 q^{-42} +20 q^{-43} +138 q^{-44} +121 q^{-45} -15 q^{-46} -133 q^{-47} -113 q^{-48} +7 q^{-49} +115 q^{-50} +115 q^{-51} +2 q^{-52} -105 q^{-53} -104 q^{-54} -14 q^{-55} +80 q^{-56} +101 q^{-57} +28 q^{-58} -64 q^{-59} -85 q^{-60} -38 q^{-61} +35 q^{-62} +75 q^{-63} +44 q^{-64} -14 q^{-65} -53 q^{-66} -46 q^{-67} -6 q^{-68} +34 q^{-69} +40 q^{-70} +17 q^{-71} -13 q^{-72} -30 q^{-73} -23 q^{-74} -2 q^{-75} +19 q^{-76} +20 q^{-77} +8 q^{-78} -4 q^{-79} -15 q^{-80} -12 q^{-81} +8 q^{-83} +7 q^{-84} +4 q^{-85} -7 q^{-87} -4 q^{-88} + q^{-89} +2 q^{-90} + q^{-91} +2 q^{-92} - q^{-93} -2 q^{-94} + q^{-95} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^3+2 q^2-2 q^{-1} -4 q^{-2} -8 q^{-3} -3 q^{-4} +9 q^{-5} +16 q^{-6} +11 q^{-7} +6 q^{-8} -5 q^{-9} -38 q^{-10} -34 q^{-11} -9 q^{-12} +34 q^{-13} +49 q^{-14} +54 q^{-15} +35 q^{-16} -65 q^{-17} -104 q^{-18} -86 q^{-19} +5 q^{-20} +75 q^{-21} +147 q^{-22} +146 q^{-23} -36 q^{-24} -165 q^{-25} -211 q^{-26} -90 q^{-27} +46 q^{-28} +229 q^{-29} +295 q^{-30} +52 q^{-31} -173 q^{-32} -320 q^{-33} -209 q^{-34} -30 q^{-35} +263 q^{-36} +414 q^{-37} +151 q^{-38} -140 q^{-39} -377 q^{-40} -292 q^{-41} -109 q^{-42} +258 q^{-43} +473 q^{-44} +215 q^{-45} -100 q^{-46} -390 q^{-47} -324 q^{-48} -160 q^{-49} +239 q^{-50} +488 q^{-51} +241 q^{-52} -75 q^{-53} -382 q^{-54} -326 q^{-55} -182 q^{-56} +221 q^{-57} +477 q^{-58} +247 q^{-59} -58 q^{-60} -360 q^{-61} -313 q^{-62} -192 q^{-63} +193 q^{-64} +443 q^{-65} +247 q^{-66} -30 q^{-67} -315 q^{-68} -288 q^{-69} -208 q^{-70} +140 q^{-71} +379 q^{-72} +245 q^{-73} +23 q^{-74} -234 q^{-75} -244 q^{-76} -231 q^{-77} +56 q^{-78} +281 q^{-79} +228 q^{-80} +86 q^{-81} -120 q^{-82} -170 q^{-83} -235 q^{-84} -35 q^{-85} +152 q^{-86} +174 q^{-87} +121 q^{-88} -7 q^{-89} -65 q^{-90} -190 q^{-91} -86 q^{-92} +29 q^{-93} +84 q^{-94} +98 q^{-95} +54 q^{-96} +30 q^{-97} -100 q^{-98} -72 q^{-99} -35 q^{-100} +4 q^{-101} +33 q^{-102} +46 q^{-103} +64 q^{-104} -22 q^{-105} -22 q^{-106} -32 q^{-107} -21 q^{-108} -14 q^{-109} +7 q^{-110} +43 q^{-111} +4 q^{-112} +8 q^{-113} -6 q^{-114} -8 q^{-115} -17 q^{-116} -10 q^{-117} +13 q^{-118} + q^{-119} +8 q^{-120} +3 q^{-121} +3 q^{-122} -7 q^{-123} -6 q^{-124} +3 q^{-125} -2 q^{-126} +2 q^{-127} + q^{-128} +2 q^{-129} - q^{-130} -2 q^{-131} + q^{-132} </math> |

coloured_jones_7 = <math>2 q^5+2 q^3-2 q-6-4 q^{-1} -6 q^{-2} +4 q^{-4} +16 q^{-5} +24 q^{-6} +15 q^{-7} -9 q^{-8} -23 q^{-9} -37 q^{-10} -45 q^{-11} -25 q^{-12} +17 q^{-13} +81 q^{-14} +98 q^{-15} +55 q^{-16} +8 q^{-17} -74 q^{-18} -151 q^{-19} -161 q^{-20} -87 q^{-21} +83 q^{-22} +223 q^{-23} +236 q^{-24} +188 q^{-25} +3 q^{-26} -240 q^{-27} -376 q^{-28} -357 q^{-29} -83 q^{-30} +249 q^{-31} +454 q^{-32} +510 q^{-33} +257 q^{-34} -187 q^{-35} -546 q^{-36} -691 q^{-37} -415 q^{-38} +115 q^{-39} +563 q^{-40} +832 q^{-41} +601 q^{-42} +6 q^{-43} -578 q^{-44} -954 q^{-45} -745 q^{-46} -115 q^{-47} +541 q^{-48} +1023 q^{-49} +886 q^{-50} +224 q^{-51} -512 q^{-52} -1072 q^{-53} -964 q^{-54} -303 q^{-55} +451 q^{-56} +1086 q^{-57} +1036 q^{-58} +372 q^{-59} -424 q^{-60} -1093 q^{-61} -1056 q^{-62} -406 q^{-63} +378 q^{-64} +1078 q^{-65} +1082 q^{-66} +436 q^{-67} -359 q^{-68} -1072 q^{-69} -1078 q^{-70} -446 q^{-71} +336 q^{-72} +1051 q^{-73} +1075 q^{-74} +455 q^{-75} -314 q^{-76} -1032 q^{-77} -1068 q^{-78} -461 q^{-79} +299 q^{-80} +1000 q^{-81} +1043 q^{-82} +468 q^{-83} -255 q^{-84} -956 q^{-85} -1032 q^{-86} -482 q^{-87} +220 q^{-88} +897 q^{-89} +985 q^{-90} +499 q^{-91} -139 q^{-92} -812 q^{-93} -954 q^{-94} -527 q^{-95} +70 q^{-96} +711 q^{-97} +879 q^{-98} +546 q^{-99} +40 q^{-100} -572 q^{-101} -813 q^{-102} -564 q^{-103} -136 q^{-104} +432 q^{-105} +694 q^{-106} +552 q^{-107} +245 q^{-108} -268 q^{-109} -572 q^{-110} -524 q^{-111} -311 q^{-112} +113 q^{-113} +415 q^{-114} +454 q^{-115} +361 q^{-116} +24 q^{-117} -269 q^{-118} -352 q^{-119} -353 q^{-120} -123 q^{-121} +117 q^{-122} +236 q^{-123} +315 q^{-124} +173 q^{-125} -7 q^{-126} -119 q^{-127} -232 q^{-128} -178 q^{-129} -65 q^{-130} +15 q^{-131} +146 q^{-132} +147 q^{-133} +92 q^{-134} +45 q^{-135} -69 q^{-136} -87 q^{-137} -78 q^{-138} -78 q^{-139} +3 q^{-140} +44 q^{-141} +56 q^{-142} +69 q^{-143} +14 q^{-144} - q^{-145} -12 q^{-146} -54 q^{-147} -29 q^{-148} -15 q^{-149} +2 q^{-150} +29 q^{-151} +12 q^{-152} +15 q^{-153} +17 q^{-154} -8 q^{-155} -11 q^{-156} -14 q^{-157} -12 q^{-158} +6 q^{-159} - q^{-160} +3 q^{-161} +10 q^{-162} +3 q^{-163} +2 q^{-164} -4 q^{-165} -6 q^{-166} + q^{-167} -2 q^{-169} +2 q^{-170} + q^{-171} +2 q^{-172} - q^{-173} -2 q^{-174} + q^{-175} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 16, 14, 1],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 16, 14, 1],
X[9, 14, 10, 15], X[15, 10, 16, 11], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr>
X[9, 14, 10, 15], X[15, 10, 16, 11], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 21]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -12, 2, 14, -6, 16, 10]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, -12, 2, 14, -6, 16, 10]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, 1, 1, -2, -2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 21]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_21_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 21]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 21]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 21]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 21]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_21_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 21]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 21]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2
-5 - t + - + 4 t - t
-5 - t + - + 4 t - t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 21]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 21]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4
1 - z</nowiki></pre></td></tr>
1 - z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 21], Knot[10, 136]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 21], Knot[10, 136]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 21]], KnotSignature[Knot[8, 21]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, -2}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 21]], KnotSignature[Knot[8, 21]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 21]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 2 3 3 2 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 21]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 2 3 3 2 2
q - -- + -- - -- + -- - -- + -
q - -- + -- - -- + -- - -- + -
6 5 4 3 2 q
6 5 4 3 2 q
q q q q q</nowiki></pre></td></tr>
q q q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 21]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 21]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 21]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 2 -12 -10 -8 2 -4 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 21]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 2 -12 -10 -8 2 -4 2
q - --- - q - q + q + -- + q + --
q - --- - q - q + q + -- + q + --
14 6 2
14 6 2
q q q</nowiki></pre></td></tr>
q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 21]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 21]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 4 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 4 4
3 a - 3 a + a + 2 a z - 3 a z + a z - a z</nowiki></pre></td></tr>
3 a - 3 a + a + 2 a z - 3 a z + a z - a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 21]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 21]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 2 2 4 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 2 2 4 2
-3 a - 3 a - a + 2 a z + 4 a z + 2 a z + 3 a z + 5 a z -
-3 a - 3 a - a + 2 a z + 4 a z + 2 a z + 3 a z + 5 a z -
Line 149: Line 98:
3 5 5 5 7 5 4 6 6 6
3 5 5 5 7 5 4 6 6 6
a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr>
a z + 3 a z + 2 a z + a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 21]], Vassiliev[3][Knot[8, 21]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 21]], Vassiliev[3][Knot[8, 21]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 21]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 1 1 1 1 1 2 1

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 21]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 1 1 1 1 1 2 1
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
Line 163: Line 110:
7 2 5 2 5 3
7 2 5 2 5 3
q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 21], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 21], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 2 -18 5 3 4 8 2 8 10 -10
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 2 -18 5 3 4 8 2 8 10 -10
q - --- - q + --- - --- - --- + --- - --- - --- + --- - q -
q - --- - q + --- - --- - --- + --- - --- - --- + --- - q -
19 17 16 15 14 13 12 11
19 17 16 15 14 13 12 11
Line 174: Line 120:
9 8 6 5 3 2 q
9 8 6 5 3 2 q
q q q q q q</nowiki></pre></td></tr>
q q q q q q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:40, 30 August 2005

8 20.gif

8_20

9 1.gif

9_1

8 21.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 21's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 21 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3849 X12,6,13,5 X13,16,14,1 X9,14,10,15 X15,10,16,11 X6,12,7,11 X7283
Gauss code -1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4
Dowker-Thistlethwaite code 4 8 -12 2 14 -6 16 10
Conway Notation [21,21,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

8 21 ML.gif 8 21 AP.gif
[{9, 3}, {2, 7}, {6, 8}, {7, 9}, {4, 1}, {3, 6}, {5, 2}, {8, 4}, {1, 5}]

[edit Notes on presentations of 8 21]

Knot 8_21.
A graph: knot 8_21.
A part of a knot and a part of a graph.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][1]
Hyperbolic Volume 6.78371
A-Polynomial See Data:8 21/A-polynomial

[edit Notes for 8 21's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 8 21's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 15, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_136,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (0, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 21. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10χ
-1      22
-3     110
-5    21 1
-7   11  0
-9  12   -1
-11 11    0
-13 1     -1
-151      1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials