10 140: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 38: | Line 41: | ||
coloured_jones_3 = <math>-q^3+2 q+2-4 q^{-1} -2 q^{-2} +4 q^{-3} +5 q^{-4} -5 q^{-5} -5 q^{-6} +4 q^{-7} +6 q^{-8} -4 q^{-9} -5 q^{-10} +3 q^{-11} +6 q^{-12} -3 q^{-13} -5 q^{-14} +2 q^{-15} +5 q^{-16} -2 q^{-17} -5 q^{-18} +5 q^{-20} -4 q^{-22} - q^{-23} +4 q^{-24} + q^{-25} -2 q^{-26} - q^{-27} +2 q^{-28} - q^{-30} + q^{-32} - q^{-33} -2 q^{-34} + q^{-35} +2 q^{-36} -2 q^{-38} + q^{-40} + q^{-41} - q^{-42} </math> | |
coloured_jones_3 = <math>-q^3+2 q+2-4 q^{-1} -2 q^{-2} +4 q^{-3} +5 q^{-4} -5 q^{-5} -5 q^{-6} +4 q^{-7} +6 q^{-8} -4 q^{-9} -5 q^{-10} +3 q^{-11} +6 q^{-12} -3 q^{-13} -5 q^{-14} +2 q^{-15} +5 q^{-16} -2 q^{-17} -5 q^{-18} +5 q^{-20} -4 q^{-22} - q^{-23} +4 q^{-24} + q^{-25} -2 q^{-26} - q^{-27} +2 q^{-28} - q^{-30} + q^{-32} - q^{-33} -2 q^{-34} + q^{-35} +2 q^{-36} -2 q^{-38} + q^{-40} + q^{-41} - q^{-42} </math> | |
||
coloured_jones_4 = <math>q^3-2 q^2-2 q+4 q^{-1} +7 q^{-2} -5 q^{-3} -6 q^{-4} -4 q^{-5} +6 q^{-6} +12 q^{-7} -4 q^{-8} -7 q^{-9} -8 q^{-10} +4 q^{-11} +14 q^{-12} -3 q^{-13} -6 q^{-14} -7 q^{-15} +3 q^{-16} +11 q^{-17} -4 q^{-18} -4 q^{-19} -5 q^{-20} +3 q^{-21} +9 q^{-22} -3 q^{-23} -2 q^{-24} -5 q^{-25} + q^{-26} +7 q^{-27} - q^{-28} -5 q^{-30} -2 q^{-31} +4 q^{-32} +3 q^{-34} -2 q^{-35} -4 q^{-36} +5 q^{-39} +2 q^{-40} -3 q^{-41} -3 q^{-42} -2 q^{-43} +3 q^{-44} +5 q^{-45} -3 q^{-47} -3 q^{-48} - q^{-49} +4 q^{-50} - q^{-53} -2 q^{-54} +3 q^{-55} -2 q^{-56} +4 q^{-60} -2 q^{-61} - q^{-62} - q^{-63} - q^{-64} +3 q^{-65} - q^{-68} - q^{-69} + q^{-70} </math> | |
coloured_jones_4 = <math>q^3-2 q^2-2 q+4 q^{-1} +7 q^{-2} -5 q^{-3} -6 q^{-4} -4 q^{-5} +6 q^{-6} +12 q^{-7} -4 q^{-8} -7 q^{-9} -8 q^{-10} +4 q^{-11} +14 q^{-12} -3 q^{-13} -6 q^{-14} -7 q^{-15} +3 q^{-16} +11 q^{-17} -4 q^{-18} -4 q^{-19} -5 q^{-20} +3 q^{-21} +9 q^{-22} -3 q^{-23} -2 q^{-24} -5 q^{-25} + q^{-26} +7 q^{-27} - q^{-28} -5 q^{-30} -2 q^{-31} +4 q^{-32} +3 q^{-34} -2 q^{-35} -4 q^{-36} +5 q^{-39} +2 q^{-40} -3 q^{-41} -3 q^{-42} -2 q^{-43} +3 q^{-44} +5 q^{-45} -3 q^{-47} -3 q^{-48} - q^{-49} +4 q^{-50} - q^{-53} -2 q^{-54} +3 q^{-55} -2 q^{-56} +4 q^{-60} -2 q^{-61} - q^{-62} - q^{-63} - q^{-64} +3 q^{-65} - q^{-68} - q^{-69} + q^{-70} </math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 47: | Line 50: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 140]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 140]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 19, 12, 18], X[14, 5, 15, 6], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 19, 12, 18], X[14, 5, 15, 6], |
||
Line 67: | Line 70: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 140]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_140_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 140]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_140_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 140]]&) /@ { |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 140]]&) /@ { |
||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 140]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 140]][t]</nowiki></pre></td></tr> |
Revision as of 17:55, 31 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 140's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
10_140 is also known as the pretzel knot P(4,3,-3). |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X11,19,12,18 X14,5,15,6 X6,17,7,18 X16,7,17,8 X8,15,9,16 X13,1,14,20 X19,13,20,12 X9,2,10,3 |
Gauss code | -1, 10, -2, 1, 4, -5, 6, -7, -10, 2, -3, 9, -8, -4, 7, -6, 5, 3, -9, 8 |
Dowker-Thistlethwaite code | 4 10 -14 -16 2 18 20 -8 -6 12 |
Conway Notation | [4,3,21-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{9, 2}, {1, 7}, {6, 8}, {7, 9}, {10, 13}, {8, 12}, {13, 11}, {12, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 10}, {11, 1}] |
[edit Notes on presentations of 10 140]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 140"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X11,19,12,18 X14,5,15,6 X6,17,7,18 X16,7,17,8 X8,15,9,16 X13,1,14,20 X19,13,20,12 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, 4, -5, 6, -7, -10, 2, -3, 9, -8, -4, 7, -6, 5, 3, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 -14 -16 2 18 20 -8 -6 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[4,3,21-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 2}, {1, 7}, {6, 8}, {7, 9}, {10, 13}, {8, 12}, {13, 11}, {12, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 10}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 140"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 9, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {8_20, K11n73, K11n74,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 140"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{8_20, K11n73, K11n74,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 140. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|