|
|
| Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
| Line 38: |
Line 41: |
|
coloured_jones_3 = <math>-q^3+2 q+2-4 q^{-1} -2 q^{-2} +4 q^{-3} +5 q^{-4} -5 q^{-5} -5 q^{-6} +4 q^{-7} +6 q^{-8} -4 q^{-9} -5 q^{-10} +3 q^{-11} +6 q^{-12} -3 q^{-13} -5 q^{-14} +2 q^{-15} +5 q^{-16} -2 q^{-17} -5 q^{-18} +5 q^{-20} -4 q^{-22} - q^{-23} +4 q^{-24} + q^{-25} -2 q^{-26} - q^{-27} +2 q^{-28} - q^{-30} + q^{-32} - q^{-33} -2 q^{-34} + q^{-35} +2 q^{-36} -2 q^{-38} + q^{-40} + q^{-41} - q^{-42} </math> | |
|
coloured_jones_3 = <math>-q^3+2 q+2-4 q^{-1} -2 q^{-2} +4 q^{-3} +5 q^{-4} -5 q^{-5} -5 q^{-6} +4 q^{-7} +6 q^{-8} -4 q^{-9} -5 q^{-10} +3 q^{-11} +6 q^{-12} -3 q^{-13} -5 q^{-14} +2 q^{-15} +5 q^{-16} -2 q^{-17} -5 q^{-18} +5 q^{-20} -4 q^{-22} - q^{-23} +4 q^{-24} + q^{-25} -2 q^{-26} - q^{-27} +2 q^{-28} - q^{-30} + q^{-32} - q^{-33} -2 q^{-34} + q^{-35} +2 q^{-36} -2 q^{-38} + q^{-40} + q^{-41} - q^{-42} </math> | |
|
coloured_jones_4 = <math>q^3-2 q^2-2 q+4 q^{-1} +7 q^{-2} -5 q^{-3} -6 q^{-4} -4 q^{-5} +6 q^{-6} +12 q^{-7} -4 q^{-8} -7 q^{-9} -8 q^{-10} +4 q^{-11} +14 q^{-12} -3 q^{-13} -6 q^{-14} -7 q^{-15} +3 q^{-16} +11 q^{-17} -4 q^{-18} -4 q^{-19} -5 q^{-20} +3 q^{-21} +9 q^{-22} -3 q^{-23} -2 q^{-24} -5 q^{-25} + q^{-26} +7 q^{-27} - q^{-28} -5 q^{-30} -2 q^{-31} +4 q^{-32} +3 q^{-34} -2 q^{-35} -4 q^{-36} +5 q^{-39} +2 q^{-40} -3 q^{-41} -3 q^{-42} -2 q^{-43} +3 q^{-44} +5 q^{-45} -3 q^{-47} -3 q^{-48} - q^{-49} +4 q^{-50} - q^{-53} -2 q^{-54} +3 q^{-55} -2 q^{-56} +4 q^{-60} -2 q^{-61} - q^{-62} - q^{-63} - q^{-64} +3 q^{-65} - q^{-68} - q^{-69} + q^{-70} </math> | |
|
coloured_jones_4 = <math>q^3-2 q^2-2 q+4 q^{-1} +7 q^{-2} -5 q^{-3} -6 q^{-4} -4 q^{-5} +6 q^{-6} +12 q^{-7} -4 q^{-8} -7 q^{-9} -8 q^{-10} +4 q^{-11} +14 q^{-12} -3 q^{-13} -6 q^{-14} -7 q^{-15} +3 q^{-16} +11 q^{-17} -4 q^{-18} -4 q^{-19} -5 q^{-20} +3 q^{-21} +9 q^{-22} -3 q^{-23} -2 q^{-24} -5 q^{-25} + q^{-26} +7 q^{-27} - q^{-28} -5 q^{-30} -2 q^{-31} +4 q^{-32} +3 q^{-34} -2 q^{-35} -4 q^{-36} +5 q^{-39} +2 q^{-40} -3 q^{-41} -3 q^{-42} -2 q^{-43} +3 q^{-44} +5 q^{-45} -3 q^{-47} -3 q^{-48} - q^{-49} +4 q^{-50} - q^{-53} -2 q^{-54} +3 q^{-55} -2 q^{-56} +4 q^{-60} -2 q^{-61} - q^{-62} - q^{-63} - q^{-64} +3 q^{-65} - q^{-68} - q^{-69} + q^{-70} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
| Line 47: |
Line 50: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 140]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 140]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 19, 12, 18], X[14, 5, 15, 6], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[11, 19, 12, 18], X[14, 5, 15, 6], |
| Line 67: |
Line 70: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 140]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_140_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 140]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_140_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 140]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 140]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 2}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 140]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 140]][t]</nowiki></pre></td></tr> |