7 5: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Knot Navigation Links|name=7_5}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!

<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
{{Knot Site Links|n=7|k=5}}
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->

<!-- -->
{{Knot Presentations|name=7_5}}
<!-- -->
{{Polynomial Invariants|name=7_5}}
{{Rolfsen Knot Page|
n = 7 |
k = 5 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,7,-2,1,-3,5,-4,6,-7,2,-6,3,-5,4/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table> |
braid_crossings = 8 |
braid_width = 3 |
braid_index = 3 |
same_alexander = [[10_130]], |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=8.33333%>-7</td ><td width=8.33333%>-6</td ><td width=8.33333%>-5</td ><td width=8.33333%>-4</td ><td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=16.6667%>&chi;</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-13</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-15</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-17</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math> q^{-4} - q^{-5} +4 q^{-7} -3 q^{-8} -3 q^{-9} +9 q^{-10} -5 q^{-11} -7 q^{-12} +13 q^{-13} -5 q^{-14} -10 q^{-15} +14 q^{-16} -4 q^{-17} -9 q^{-18} +11 q^{-19} -2 q^{-20} -6 q^{-21} +5 q^{-22} -2 q^{-24} + q^{-25} </math> |
coloured_jones_3 = <math> q^{-6} - q^{-7} + q^{-9} +3 q^{-10} -3 q^{-11} -3 q^{-12} +2 q^{-13} +9 q^{-14} -4 q^{-15} -10 q^{-16} - q^{-17} +18 q^{-18} - q^{-19} -18 q^{-20} -6 q^{-21} +24 q^{-22} +7 q^{-23} -25 q^{-24} -12 q^{-25} +28 q^{-26} +13 q^{-27} -28 q^{-28} -15 q^{-29} +27 q^{-30} +16 q^{-31} -26 q^{-32} -15 q^{-33} +22 q^{-34} +15 q^{-35} -18 q^{-36} -12 q^{-37} +12 q^{-38} +11 q^{-39} -8 q^{-40} -8 q^{-41} +4 q^{-42} +5 q^{-43} -2 q^{-44} -2 q^{-45} +2 q^{-47} - q^{-48} </math> |
coloured_jones_4 = <math> q^{-8} - q^{-9} + q^{-11} +3 q^{-13} -4 q^{-14} -2 q^{-15} +3 q^{-16} + q^{-17} +10 q^{-18} -9 q^{-19} -9 q^{-20} +2 q^{-22} +26 q^{-23} -9 q^{-24} -17 q^{-25} -12 q^{-26} -5 q^{-27} +48 q^{-28} - q^{-29} -19 q^{-30} -28 q^{-31} -22 q^{-32} +66 q^{-33} +13 q^{-34} -13 q^{-35} -43 q^{-36} -43 q^{-37} +79 q^{-38} +26 q^{-39} -6 q^{-40} -54 q^{-41} -57 q^{-42} +84 q^{-43} +34 q^{-44} +2 q^{-45} -59 q^{-46} -64 q^{-47} +82 q^{-48} +37 q^{-49} +7 q^{-50} -55 q^{-51} -64 q^{-52} +69 q^{-53} +33 q^{-54} +13 q^{-55} -42 q^{-56} -56 q^{-57} +47 q^{-58} +22 q^{-59} +17 q^{-60} -22 q^{-61} -40 q^{-62} +23 q^{-63} +9 q^{-64} +15 q^{-65} -7 q^{-66} -21 q^{-67} +9 q^{-68} +7 q^{-70} -7 q^{-72} +3 q^{-73} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math> |
coloured_jones_5 = <math> q^{-10} - q^{-11} + q^{-13} +2 q^{-16} -3 q^{-17} -2 q^{-18} +3 q^{-19} +3 q^{-20} + q^{-21} +4 q^{-22} -8 q^{-23} -9 q^{-24} +8 q^{-26} +10 q^{-27} +14 q^{-28} -10 q^{-29} -23 q^{-30} -15 q^{-31} + q^{-32} +22 q^{-33} +39 q^{-34} +5 q^{-35} -31 q^{-36} -40 q^{-37} -27 q^{-38} +18 q^{-39} +69 q^{-40} +40 q^{-41} -19 q^{-42} -61 q^{-43} -69 q^{-44} -7 q^{-45} +82 q^{-46} +87 q^{-47} +13 q^{-48} -69 q^{-49} -110 q^{-50} -44 q^{-51} +82 q^{-52} +125 q^{-53} +53 q^{-54} -70 q^{-55} -142 q^{-56} -74 q^{-57} +74 q^{-58} +152 q^{-59} +83 q^{-60} -66 q^{-61} -162 q^{-62} -95 q^{-63} +67 q^{-64} +166 q^{-65} +102 q^{-66} -62 q^{-67} -168 q^{-68} -107 q^{-69} +56 q^{-70} +167 q^{-71} +111 q^{-72} -51 q^{-73} -159 q^{-74} -111 q^{-75} +38 q^{-76} +148 q^{-77} +112 q^{-78} -30 q^{-79} -130 q^{-80} -103 q^{-81} +11 q^{-82} +110 q^{-83} +97 q^{-84} -3 q^{-85} -83 q^{-86} -81 q^{-87} -11 q^{-88} +58 q^{-89} +67 q^{-90} +16 q^{-91} -37 q^{-92} -47 q^{-93} -19 q^{-94} +20 q^{-95} +31 q^{-96} +15 q^{-97} -7 q^{-98} -18 q^{-99} -12 q^{-100} +3 q^{-101} +10 q^{-102} +3 q^{-103} +2 q^{-104} -2 q^{-105} -6 q^{-106} + q^{-107} +3 q^{-108} - q^{-109} + q^{-111} -2 q^{-112} +2 q^{-114} - q^{-115} </math> |
coloured_jones_6 = <math> q^{-12} - q^{-13} + q^{-15} - q^{-18} +3 q^{-19} -3 q^{-20} -2 q^{-21} +4 q^{-22} +2 q^{-23} +2 q^{-24} -4 q^{-25} +5 q^{-26} -9 q^{-27} -9 q^{-28} +6 q^{-29} +8 q^{-30} +11 q^{-31} -2 q^{-32} +14 q^{-33} -21 q^{-34} -29 q^{-35} -5 q^{-36} +7 q^{-37} +26 q^{-38} +14 q^{-39} +48 q^{-40} -20 q^{-41} -52 q^{-42} -40 q^{-43} -23 q^{-44} +17 q^{-45} +30 q^{-46} +116 q^{-47} +17 q^{-48} -44 q^{-49} -76 q^{-50} -84 q^{-51} -41 q^{-52} +7 q^{-53} +188 q^{-54} +89 q^{-55} +17 q^{-56} -75 q^{-57} -143 q^{-58} -140 q^{-59} -70 q^{-60} +224 q^{-61} +165 q^{-62} +118 q^{-63} -27 q^{-64} -168 q^{-65} -246 q^{-66} -181 q^{-67} +220 q^{-68} +217 q^{-69} +223 q^{-70} +44 q^{-71} -162 q^{-72} -331 q^{-73} -287 q^{-74} +196 q^{-75} +244 q^{-76} +307 q^{-77} +107 q^{-78} -144 q^{-79} -390 q^{-80} -363 q^{-81} +173 q^{-82} +256 q^{-83} +365 q^{-84} +148 q^{-85} -131 q^{-86} -425 q^{-87} -407 q^{-88} +155 q^{-89} +258 q^{-90} +397 q^{-91} +174 q^{-92} -117 q^{-93} -438 q^{-94} -428 q^{-95} +131 q^{-96} +249 q^{-97} +405 q^{-98} +194 q^{-99} -89 q^{-100} -422 q^{-101} -429 q^{-102} +90 q^{-103} +213 q^{-104} +383 q^{-105} +210 q^{-106} -39 q^{-107} -365 q^{-108} -399 q^{-109} +34 q^{-110} +143 q^{-111} +318 q^{-112} +208 q^{-113} +27 q^{-114} -263 q^{-115} -325 q^{-116} -16 q^{-117} +53 q^{-118} +212 q^{-119} +172 q^{-120} +78 q^{-121} -142 q^{-122} -215 q^{-123} -35 q^{-124} -16 q^{-125} +100 q^{-126} +105 q^{-127} +86 q^{-128} -51 q^{-129} -105 q^{-130} -19 q^{-131} -38 q^{-132} +26 q^{-133} +40 q^{-134} +57 q^{-135} -10 q^{-136} -37 q^{-137} +3 q^{-138} -24 q^{-139} - q^{-140} +6 q^{-141} +24 q^{-142} -2 q^{-143} -10 q^{-144} +8 q^{-145} -8 q^{-146} -2 q^{-147} -2 q^{-148} +8 q^{-149} -2 q^{-150} -4 q^{-151} +5 q^{-152} -2 q^{-153} - q^{-155} +2 q^{-156} -2 q^{-158} + q^{-159} </math> |
coloured_jones_7 = <math> q^{-14} - q^{-15} + q^{-17} - q^{-20} +3 q^{-22} -3 q^{-23} - q^{-24} +3 q^{-25} +2 q^{-26} +2 q^{-27} -3 q^{-28} -4 q^{-29} +5 q^{-30} -8 q^{-31} -4 q^{-32} +5 q^{-33} +8 q^{-34} +13 q^{-35} - q^{-36} -8 q^{-37} +3 q^{-38} -22 q^{-39} -19 q^{-40} -2 q^{-41} +10 q^{-42} +38 q^{-43} +22 q^{-44} +7 q^{-45} +15 q^{-46} -41 q^{-47} -53 q^{-48} -41 q^{-49} -23 q^{-50} +45 q^{-51} +57 q^{-52} +61 q^{-53} +82 q^{-54} -17 q^{-55} -75 q^{-56} -102 q^{-57} -120 q^{-58} -22 q^{-59} +38 q^{-60} +113 q^{-61} +205 q^{-62} +97 q^{-63} -13 q^{-64} -115 q^{-65} -239 q^{-66} -175 q^{-67} -94 q^{-68} +71 q^{-69} +311 q^{-70} +270 q^{-71} +168 q^{-72} -10 q^{-73} -292 q^{-74} -341 q^{-75} -320 q^{-76} -105 q^{-77} +307 q^{-78} +422 q^{-79} +409 q^{-80} +214 q^{-81} -232 q^{-82} -441 q^{-83} -558 q^{-84} -370 q^{-85} +193 q^{-86} +483 q^{-87} +633 q^{-88} +482 q^{-89} -84 q^{-90} -463 q^{-91} -744 q^{-92} -628 q^{-93} +23 q^{-94} +471 q^{-95} +791 q^{-96} +727 q^{-97} +72 q^{-98} -439 q^{-99} -864 q^{-100} -830 q^{-101} -127 q^{-102} +433 q^{-103} +893 q^{-104} +899 q^{-105} +193 q^{-106} -415 q^{-107} -934 q^{-108} -962 q^{-109} -228 q^{-110} +408 q^{-111} +950 q^{-112} +1007 q^{-113} +264 q^{-114} -398 q^{-115} -972 q^{-116} -1039 q^{-117} -289 q^{-118} +390 q^{-119} +979 q^{-120} +1063 q^{-121} +313 q^{-122} -376 q^{-123} -979 q^{-124} -1079 q^{-125} -341 q^{-126} +355 q^{-127} +970 q^{-128} +1087 q^{-129} +365 q^{-130} -321 q^{-131} -940 q^{-132} -1081 q^{-133} -402 q^{-134} +270 q^{-135} +900 q^{-136} +1064 q^{-137} +428 q^{-138} -211 q^{-139} -818 q^{-140} -1019 q^{-141} -466 q^{-142} +128 q^{-143} +731 q^{-144} +959 q^{-145} +471 q^{-146} -49 q^{-147} -597 q^{-148} -859 q^{-149} -480 q^{-150} -44 q^{-151} +472 q^{-152} +741 q^{-153} +450 q^{-154} +109 q^{-155} -323 q^{-156} -597 q^{-157} -406 q^{-158} -162 q^{-159} +193 q^{-160} +457 q^{-161} +336 q^{-162} +181 q^{-163} -89 q^{-164} -317 q^{-165} -252 q^{-166} -177 q^{-167} +13 q^{-168} +200 q^{-169} +173 q^{-170} +149 q^{-171} +30 q^{-172} -115 q^{-173} -105 q^{-174} -108 q^{-175} -41 q^{-176} +57 q^{-177} +44 q^{-178} +74 q^{-179} +45 q^{-180} -25 q^{-181} -22 q^{-182} -43 q^{-183} -22 q^{-184} +11 q^{-185} -7 q^{-186} +18 q^{-187} +26 q^{-188} -3 q^{-189} -12 q^{-191} -4 q^{-192} +7 q^{-193} -12 q^{-194} + q^{-195} +8 q^{-196} +2 q^{-198} -4 q^{-199} +5 q^{-201} -4 q^{-202} -2 q^{-203} +2 q^{-204} + q^{-206} -2 q^{-207} +2 q^{-209} - q^{-210} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[7, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 14, 8, 1],
X[13, 6, 14, 7], X[11, 8, 12, 9], X[9, 2, 10, 3]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[7, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[7, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 14, 2, 8, 6]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[7, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -2, 1, -2, -2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[7, 5]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[7, 5]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:7_5_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[7, 5]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 2, 4, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[7, 5]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 2
5 + -- - - - 4 t + 2 t
2 t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[7, 5]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 + 4 z + 2 z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 5], Knot[10, 130]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[7, 5]], KnotSignature[Knot[7, 5]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{17, -4}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[7, 5]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 2 3 3 3 3 -3 -2
-q + -- - -- + -- - -- + -- - q + q
8 7 6 5 4
q q q q q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 5]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[7, 5]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -28 -22 -18 -16 -14 -12 2 -6
-q - q - q + q + q + q + --- + q
10
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[7, 5]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 8 4 2 6 2 8 2 4 4 6 4
2 a - a + 3 a z + 2 a z - a z + a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[7, 5]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 8 5 7 9 11 4 2 8 2 10 2
2 a - a - a z + a z + a z - a z - 3 a z + a z - 2 a z -
5 3 7 3 9 3 11 3 4 4 6 4 10 4
a z - 4 a z - 2 a z + a z + a z - a z + 2 a z +
5 5 7 5 9 5 6 6 8 6
a z + 3 a z + 2 a z + a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[7, 5]], Vassiliev[3][Knot[7, 5]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, -8}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[7, 5]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 -3 1 1 1 2 1 1
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
19 7 17 6 15 6 15 5 13 5 13 4
q t q t q t q t q t q t
2 2 1 1 2 1
------ + ------ + ----- + ----- + ----- + ----
11 4 11 3 9 3 9 2 7 2 5
q t q t q t q t q t q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[7, 5], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -25 2 5 6 2 11 9 4 14 10 5
q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
24 22 21 20 19 18 17 16 15 14
q q q q q q q q q q
13 7 5 9 3 3 4 -5 -4
--- - --- - --- + --- - -- - -- + -- - q + q
13 12 11 10 9 8 7
q q q q q q q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:01, 1 September 2005

7 4.gif

7_4

7 6.gif

7_6

7 5.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 7 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 5 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,12,6,13 X7,14,8,1 X13,6,14,7 X11,8,12,9 X9,2,10,3
Gauss code -1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4
Dowker-Thistlethwaite code 4 10 12 14 2 8 6
Conway Notation [322]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 8, width is 3,

Braid index is 3

7 5 ML.gif 7 5 AP.gif
[{9, 2}, {1, 7}, {6, 8}, {7, 9}, {8, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 1}]

[edit Notes on presentations of 7 5]

Knot 7_5.
A graph, knot 7_5.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number Failed to parse (syntax error): {\displaystyle \text{$\$$Failed}}
Hyperbolic Volume 6.44354
A-Polynomial See Data:7 5/A-polynomial

[edit Notes for 7 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 7 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 17, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_130,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, -8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 7 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-3       11
-5      110
-7     2  2
-9    11  0
-11   22   0
-13  11    0
-15 12     -1
-17 1      1
-191       -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials