8 16: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 8 |
<!-- provide an anchor so we can return to the top of the page -->
k = 16 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,5,-6,2,-1,4,-5,6,-7,3,-4,8,-2,7,-3/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
{{Knot Navigation Links|ext=gif}}
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>

<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
{{Rolfsen Knot Page Header|n=8|k=16|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,5,-6,2,-1,4,-5,6,-7,3,-4,8,-2,7,-3/goTop.html}}
</table> |

braid_crossings = 8 |
<br style="clear:both" />
braid_width = 3 |

braid_index = 3 |
{{:{{PAGENAME}} Further Notes and Views}}
same_alexander = [[10_156]], [[K11n15]], [[K11n56]], [[K11n58]], |

same_jones = [[10_156]], |
{{Knot Presentations}}
khovanov_table = <table border=1>
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=15.3846%>&chi;</td></tr>
<td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>2</td></tr>
Line 39: Line 37:
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^7-3 q^6-q^5+10 q^4-8 q^3-10 q^2+24 q-8-25 q^{-1} +35 q^{-2} -3 q^{-3} -37 q^{-4} +38 q^{-5} +4 q^{-6} -41 q^{-7} +32 q^{-8} +8 q^{-9} -32 q^{-10} +19 q^{-11} +7 q^{-12} -15 q^{-13} +6 q^{-14} +2 q^{-15} -3 q^{-16} + q^{-17} </math> |
{{Computer Talk Header}}
coloured_jones_3 = <math>-q^{15}+3 q^{14}+q^{13}-5 q^{12}-8 q^{11}+8 q^{10}+20 q^9-8 q^8-33 q^7-3 q^6+51 q^5+18 q^4-61 q^3-43 q^2+70 q+65-64 q^{-1} -96 q^{-2} +63 q^{-3} +113 q^{-4} -46 q^{-5} -136 q^{-6} +37 q^{-7} +147 q^{-8} -19 q^{-9} -160 q^{-10} +8 q^{-11} +159 q^{-12} +8 q^{-13} -155 q^{-14} -20 q^{-15} +139 q^{-16} +31 q^{-17} -116 q^{-18} -35 q^{-19} +88 q^{-20} +33 q^{-21} -58 q^{-22} -28 q^{-23} +34 q^{-24} +19 q^{-25} -19 q^{-26} -8 q^{-27} +8 q^{-28} +3 q^{-29} -3 q^{-30} -2 q^{-31} +3 q^{-32} - q^{-33} </math> |

coloured_jones_4 = <math>q^{26}-3 q^{25}-q^{24}+5 q^{23}+3 q^{22}+8 q^{21}-18 q^{20}-18 q^{19}+5 q^{18}+17 q^{17}+59 q^{16}-22 q^{15}-63 q^{14}-47 q^{13}-7 q^{12}+157 q^{11}+49 q^{10}-62 q^9-146 q^8-142 q^7+210 q^6+175 q^5+61 q^4-190 q^3-350 q^2+140 q+250+269 q^{-1} -116 q^{-2} -526 q^{-3} -16 q^{-4} +224 q^{-5} +466 q^{-6} +32 q^{-7} -619 q^{-8} -182 q^{-9} +140 q^{-10} +609 q^{-11} +182 q^{-12} -650 q^{-13} -319 q^{-14} +48 q^{-15} +694 q^{-16} +306 q^{-17} -625 q^{-18} -420 q^{-19} -50 q^{-20} +706 q^{-21} +401 q^{-22} -522 q^{-23} -454 q^{-24} -160 q^{-25} +596 q^{-26} +437 q^{-27} -330 q^{-28} -378 q^{-29} -239 q^{-30} +376 q^{-31} +362 q^{-32} -130 q^{-33} -206 q^{-34} -217 q^{-35} +153 q^{-36} +202 q^{-37} -23 q^{-38} -55 q^{-39} -117 q^{-40} +37 q^{-41} +67 q^{-42} -7 q^{-43} +3 q^{-44} -35 q^{-45} +8 q^{-46} +14 q^{-47} -7 q^{-48} +4 q^{-49} -6 q^{-50} +3 q^{-51} +2 q^{-52} -3 q^{-53} + q^{-54} </math> |
<table>
coloured_jones_5 = <math>-q^{40}+3 q^{39}+q^{38}-5 q^{37}-3 q^{36}-3 q^{35}+2 q^{34}+16 q^{33}+21 q^{32}-7 q^{31}-29 q^{30}-42 q^{29}-27 q^{28}+32 q^{27}+94 q^{26}+87 q^{25}-10 q^{24}-124 q^{23}-178 q^{22}-93 q^{21}+117 q^{20}+292 q^{19}+245 q^{18}-29 q^{17}-338 q^{16}-449 q^{15}-186 q^{14}+317 q^{13}+632 q^{12}+463 q^{11}-135 q^{10}-730 q^9-804 q^8-159 q^7+702 q^6+1080 q^5+579 q^4-520 q^3-1299 q^2-996 q+200+1351 q^{-1} +1442 q^{-2} +207 q^{-3} -1336 q^{-4} -1756 q^{-5} -654 q^{-6} +1152 q^{-7} +2062 q^{-8} +1089 q^{-9} -975 q^{-10} -2224 q^{-11} -1479 q^{-12} +708 q^{-13} +2379 q^{-14} +1833 q^{-15} -513 q^{-16} -2443 q^{-17} -2123 q^{-18} +276 q^{-19} +2526 q^{-20} +2379 q^{-21} -103 q^{-22} -2546 q^{-23} -2596 q^{-24} -107 q^{-25} +2567 q^{-26} +2779 q^{-27} +297 q^{-28} -2494 q^{-29} -2921 q^{-30} -542 q^{-31} +2366 q^{-32} +2993 q^{-33} +786 q^{-34} -2109 q^{-35} -2962 q^{-36} -1048 q^{-37} +1752 q^{-38} +2809 q^{-39} +1252 q^{-40} -1311 q^{-41} -2501 q^{-42} -1369 q^{-43} +837 q^{-44} +2065 q^{-45} +1370 q^{-46} -411 q^{-47} -1566 q^{-48} -1216 q^{-49} +77 q^{-50} +1060 q^{-51} +975 q^{-52} +125 q^{-53} -640 q^{-54} -696 q^{-55} -182 q^{-56} +326 q^{-57} +428 q^{-58} +171 q^{-59} -134 q^{-60} -243 q^{-61} -112 q^{-62} +51 q^{-63} +109 q^{-64} +59 q^{-65} -12 q^{-66} -41 q^{-67} -33 q^{-68} +6 q^{-69} +22 q^{-70} +2 q^{-71} -3 q^{-72} + q^{-73} -5 q^{-74} - q^{-75} +6 q^{-76} -3 q^{-77} -2 q^{-78} +3 q^{-79} - q^{-80} </math> |
<tr valign=top>
coloured_jones_6 = <math>q^{57}-3 q^{56}-q^{55}+5 q^{54}+3 q^{53}+3 q^{52}-7 q^{51}-19 q^{49}-19 q^{48}+19 q^{47}+30 q^{46}+47 q^{45}+12 q^{44}+13 q^{43}-85 q^{42}-133 q^{41}-63 q^{40}+19 q^{39}+159 q^{38}+182 q^{37}+268 q^{36}-20 q^{35}-301 q^{34}-413 q^{33}-376 q^{32}-42 q^{31}+282 q^{30}+886 q^{29}+660 q^{28}+134 q^{27}-552 q^{26}-1105 q^{25}-1100 q^{24}-605 q^{23}+996 q^{22}+1609 q^{21}+1657 q^{20}+654 q^{19}-879 q^{18}-2272 q^{17}-2743 q^{16}-659 q^{15}+1182 q^{14}+3059 q^{13}+3147 q^{12}+1515 q^{11}-1657 q^{10}-4476 q^9-3646 q^8-1651 q^7+2325 q^6+4974 q^5+5241 q^4+1485 q^3-3847 q^2-5842 q-5721-965 q^{-1} +4404 q^{-2} +8140 q^{-3} +5767 q^{-4} -771 q^{-5} -5808 q^{-6} -8981 q^{-7} -5297 q^{-8} +1663 q^{-9} +9049 q^{-10} +9327 q^{-11} +3213 q^{-12} -3965 q^{-13} -10546 q^{-14} -9014 q^{-15} -1759 q^{-16} +8461 q^{-17} +11491 q^{-18} +6665 q^{-19} -1652 q^{-20} -10910 q^{-21} -11566 q^{-22} -4648 q^{-23} +7473 q^{-24} +12667 q^{-25} +9159 q^{-26} +208 q^{-27} -10915 q^{-28} -13273 q^{-29} -6739 q^{-30} +6680 q^{-31} +13452 q^{-32} +11007 q^{-33} +1604 q^{-34} -10853 q^{-35} -14578 q^{-36} -8458 q^{-37} +5801 q^{-38} +13912 q^{-39} +12629 q^{-40} +3162 q^{-41} -10203 q^{-42} -15409 q^{-43} -10272 q^{-44} +4031 q^{-45} +13348 q^{-46} +13829 q^{-47} +5360 q^{-48} -8049 q^{-49} -14881 q^{-50} -11817 q^{-51} +978 q^{-52} +10786 q^{-53} +13502 q^{-54} +7563 q^{-55} -4203 q^{-56} -11981 q^{-57} -11729 q^{-58} -2326 q^{-59} +6311 q^{-60} +10646 q^{-61} +8125 q^{-62} -154 q^{-63} -7147 q^{-64} -9081 q^{-65} -3938 q^{-66} +1838 q^{-67} +6070 q^{-68} +6230 q^{-69} +1989 q^{-70} -2639 q^{-71} -5023 q^{-72} -3174 q^{-73} -538 q^{-74} +2163 q^{-75} +3224 q^{-76} +1817 q^{-77} -306 q^{-78} -1843 q^{-79} -1461 q^{-80} -780 q^{-81} +324 q^{-82} +1086 q^{-83} +818 q^{-84} +167 q^{-85} -438 q^{-86} -364 q^{-87} -327 q^{-88} -59 q^{-89} +245 q^{-90} +214 q^{-91} +70 q^{-92} -87 q^{-93} -31 q^{-94} -71 q^{-95} -36 q^{-96} +47 q^{-97} +33 q^{-98} +10 q^{-99} -25 q^{-100} +11 q^{-101} -7 q^{-102} -12 q^{-103} +11 q^{-104} +2 q^{-105} + q^{-106} -6 q^{-107} +3 q^{-108} +2 q^{-109} -3 q^{-110} + q^{-111} </math> |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
coloured_jones_7 = <math>-q^{77}+3 q^{76}+q^{75}-5 q^{74}-3 q^{73}-3 q^{72}+7 q^{71}+5 q^{70}+3 q^{69}+17 q^{68}+7 q^{67}-20 q^{66}-35 q^{65}-50 q^{64}-13 q^{63}+24 q^{62}+39 q^{61}+119 q^{60}+117 q^{59}+50 q^{58}-63 q^{57}-236 q^{56}-265 q^{55}-206 q^{54}-102 q^{53}+231 q^{52}+496 q^{51}+605 q^{50}+507 q^{49}-59 q^{48}-577 q^{47}-990 q^{46}-1207 q^{45}-684 q^{44}+181 q^{43}+1236 q^{42}+2115 q^{41}+1858 q^{40}+879 q^{39}-694 q^{38}-2595 q^{37}-3326 q^{36}-2899 q^{35}-954 q^{34}+2197 q^{33}+4399 q^{32}+5232 q^{31}+3816 q^{30}-72 q^{29}-4116 q^{28}-7274 q^{27}-7578 q^{26}-3711 q^{25}+1847 q^{24}+7752 q^{23}+10998 q^{22}+8840 q^{21}+2904 q^{20}-5758 q^{19}-13028 q^{18}-14181 q^{17}-9460 q^{16}+851 q^{15}+12286 q^{14}+18243 q^{13}+16969 q^{12}+6719 q^{11}-8340 q^{10}-19818 q^9-23784 q^8-15878 q^7+1107 q^6+18085 q^5+28705 q^4+25303 q^3+8356 q^2-12909 q-30600-33687 q^{-1} -19117 q^{-2} +4988 q^{-3} +29521 q^{-4} +39865 q^{-5} +29561 q^{-6} +4823 q^{-7} -25363 q^{-8} -43600 q^{-9} -39112 q^{-10} -15197 q^{-11} +19379 q^{-12} +44807 q^{-13} +46617 q^{-14} +25329 q^{-15} -11993 q^{-16} -44047 q^{-17} -52503 q^{-18} -34421 q^{-19} +4638 q^{-20} +41971 q^{-21} +56398 q^{-22} +42097 q^{-23} +2550 q^{-24} -39239 q^{-25} -59199 q^{-26} -48383 q^{-27} -8627 q^{-28} +36527 q^{-29} +60871 q^{-30} +53343 q^{-31} +13846 q^{-32} -34098 q^{-33} -62288 q^{-34} -57325 q^{-35} -17878 q^{-36} +32218 q^{-37} +63392 q^{-38} +60622 q^{-39} +21301 q^{-40} -30840 q^{-41} -64672 q^{-42} -63577 q^{-43} -24173 q^{-44} +29684 q^{-45} +65879 q^{-46} +66514 q^{-47} +27181 q^{-48} -28413 q^{-49} -67044 q^{-50} -69481 q^{-51} -30530 q^{-52} +26397 q^{-53} +67545 q^{-54} +72462 q^{-55} +34715 q^{-56} -23142 q^{-57} -66976 q^{-58} -75019 q^{-59} -39541 q^{-60} +18181 q^{-61} +64426 q^{-62} +76462 q^{-63} +44850 q^{-64} -11370 q^{-65} -59471 q^{-66} -75993 q^{-67} -49674 q^{-68} +3119 q^{-69} +51715 q^{-70} +72699 q^{-71} +53060 q^{-72} +5813 q^{-73} -41513 q^{-74} -66212 q^{-75} -53989 q^{-76} -14044 q^{-77} +29826 q^{-78} +56667 q^{-79} +51610 q^{-80} +20314 q^{-81} -17896 q^{-82} -44973 q^{-83} -46094 q^{-84} -23700 q^{-85} +7529 q^{-86} +32625 q^{-87} +37962 q^{-88} +23751 q^{-89} +298 q^{-90} -21075 q^{-91} -28709 q^{-92} -21093 q^{-93} -4955 q^{-94} +11823 q^{-95} +19723 q^{-96} +16633 q^{-97} +6638 q^{-98} -5311 q^{-99} -12093 q^{-100} -11767 q^{-101} -6321 q^{-102} +1507 q^{-103} +6674 q^{-104} +7423 q^{-105} +4806 q^{-106} +201 q^{-107} -3153 q^{-108} -4130 q^{-109} -3212 q^{-110} -698 q^{-111} +1305 q^{-112} +2093 q^{-113} +1843 q^{-114} +559 q^{-115} -456 q^{-116} -903 q^{-117} -921 q^{-118} -363 q^{-119} +107 q^{-120} +370 q^{-121} +465 q^{-122} +154 q^{-123} -63 q^{-124} -123 q^{-125} -162 q^{-126} -53 q^{-127} -15 q^{-128} +35 q^{-129} +99 q^{-130} +17 q^{-131} -25 q^{-132} -15 q^{-133} -16 q^{-134} +9 q^{-135} -8 q^{-136} -6 q^{-137} +22 q^{-138} -8 q^{-140} -2 q^{-141} - q^{-142} +6 q^{-143} -3 q^{-144} -2 q^{-145} +3 q^{-146} - q^{-147} </math> |
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
computer_talk =
</tr>
<table>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[8, 16]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 16]]</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 7, 13, 8],
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 16]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 7, 13, 8],
X[8, 3, 9, 4], X[4, 9, 5, 10], X[10, 15, 11, 16], X[2, 14, 3, 13]]</nowiki></pre></td></tr>
X[8, 3, 9, 4], X[4, 9, 5, 10], X[10, 15, 11, 16], X[2, 14, 3, 13]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 16]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[8, 16]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2}]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 16]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 16]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 8 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 16]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 14, 12, 4, 16, 2, 10]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 16]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 16]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 16]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:8_16_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 16]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, 4, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 16]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 4 8 2 3
-9 + t - -- + - + 8 t - 4 t + t
-9 + t - -- + - + 8 t - 4 t + t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 16]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + z + 2 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 16]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 16], Knot[10, 156], Knot[11, NonAlternating, 15],
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + z + 2 z + z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 16], Knot[10, 156], Knot[11, NonAlternating, 15],
Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]}</nowiki></pre></td></tr>
Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]}</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 16]], KnotSignature[Knot[8, 16]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{35, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[8, 16]][q]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 5 6 6 6 2
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 16]], KnotSignature[Knot[8, 16]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{35, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 16]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 3 5 6 6 6 2
-4 - q + -- - -- + -- - -- + - + 3 q - q
-4 - q + -- - -- + -- - -- + - + 3 q - q
5 4 3 2 q
5 4 3 2 q
q q q q</nowiki></pre></td></tr>
q q q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 16], Knot[10, 156]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 16]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 -14 -10 -8 2 -4 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 16], Knot[10, 156]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 16]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 -16 -14 -10 -8 2 -4 2 4 6
1 - q + q - q + q - q + -- - q + -- + q - q
1 - q + q - q + q - q + -- - q + -- + q - q
6 2
6 2
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 16]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 z 3 5 2 2 2 4 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 16]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 2 2 2 4 2 4 2 4 4 4 2 6
2 a - a - 2 z + 5 a z - 2 a z - z + 4 a z - a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 16]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 z 3 5 2 2 2 4 2
-2 a - a + - + 3 a z + 4 a z + 2 a z + 5 z + 10 a z + 4 a z -
-2 a - a + - + 3 a z + 4 a z + 2 a z + 5 z + 10 a z + 4 a z -
a
a
Line 101: Line 202:
2 6 4 6 7 3 7
2 6 4 6 7 3 7
8 a z + 5 a z + 2 a z + 2 a z</nowiki></pre></td></tr>
8 a z + 5 a z + 2 a z + 2 a z</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 16]], Vassiliev[3][Knot[8, 16]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 16]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 4 1 2 1 3 2 3 3
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 16]], Vassiliev[3][Knot[8, 16]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 16]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 4 1 2 1 3 2 3 3
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- +
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2
Line 113: Line 224:
---- + ---- + --- + 2 q t + q t + 2 q t + q t
---- + ---- + --- + 2 q t + q t + 2 q t + q t
5 3 q
5 3 q
q t q t</nowiki></pre></td></tr>
q t q t</nowiki></code></td></tr>
</table>
</table>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
[[Category:Knot Page]]
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 16], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -17 3 2 6 15 7 19 32 8 32 41
-8 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- +
16 15 14 13 12 11 10 9 8 7
q q q q q q q q q q
4 38 37 3 35 25 2 3 4 5
-- + -- - -- - -- + -- - -- + 24 q - 10 q - 8 q + 10 q - q -
6 5 4 3 2 q
q q q q q
6 7
3 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:02, 1 September 2005

8 15.gif

8_15

8 17.gif

8_17

8 16.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 16 at Knotilus!

Square depiction.

Knot presentations

Planar diagram presentation X6271 X14,6,15,5 X16,11,1,12 X12,7,13,8 X8394 X4,9,5,10 X10,15,11,16 X2,14,3,13
Gauss code 1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3
Dowker-Thistlethwaite code 6 8 14 12 4 16 2 10
Conway Notation [.2.20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 8, width is 3,

Braid index is 3

8 16 ML.gif 8 16 AP.gif
[{3, 10}, {2, 6}, {8, 11}, {9, 7}, {4, 8}, {6, 9}, {5, 3}, {10, 4}, {1, 5}, {11, 2}, {7, 1}]

[edit Notes on presentations of 8 16]

Knot 8_16.
A graph, knot 8_16.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index 4
Nakanishi index 1
Maximal Thurston-Bennequin number [-8][-2]
Hyperbolic Volume 10.579
A-Polynomial See Data:8 16/A-polynomial

[edit Notes for 8 16's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 8 16's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 35, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_156, K11n15, K11n56, K11n58,}

Same Jones Polynomial (up to mirroring, ): {10_156,}

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123χ
5        1-1
3       2 2
1      21 -1
-1     42  2
-3    33   0
-5   33    0
-7  23     1
-9 13      -2
-11 2       2
-131        -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials