9 3: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->

{{Rolfsen Knot Page|
<!-- provide an anchor so we can return to the top of the page -->
n = 9 |
<span id="top"></span>
k = 3 |

KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-8,5,-9,6,-1,3,-4,7,-2,8,-5,9,-6,4,-3/goTop.html |
<!-- this relies on transclusion for next and previous links -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
{{Knot Navigation Links|ext=gif}}
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>

<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
{| align=left
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
|- valign=top
</table> |
|[[Image:{{PAGENAME}}.gif]]
braid_crossings = 10 |
|{{Rolfsen Knot Site Links|n=9|k=3|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-8,5,-9,6,-1,3,-4,7,-2,8,-5,9,-6,4,-3/goTop.html}}
braid_width = 3 |
|{{:{{PAGENAME}} Quick Notes}}
braid_index = 3 |
|}
same_alexander = |

same_jones = |
<br style="clear:both" />
khovanov_table = <table border=1>

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
Line 47: Line 38:
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table> |
coloured_jones_2 = <math>q^{33}-q^{32}+2 q^{30}-2 q^{29}-q^{28}+3 q^{27}-4 q^{26}+5 q^{24}-6 q^{23}+q^{22}+5 q^{21}-6 q^{20}+6 q^{18}-5 q^{17}-q^{16}+6 q^{15}-4 q^{14}-2 q^{13}+5 q^{12}-2 q^{11}-2 q^{10}+3 q^9-q^7+q^6</math> |

coloured_jones_3 = <math>-q^{63}+q^{62}-2 q^{59}+2 q^{58}+q^{57}+q^{56}-4 q^{55}+q^{54}+3 q^{53}+2 q^{52}-5 q^{51}-q^{50}+3 q^{49}+3 q^{48}-3 q^{47}-4 q^{46}+3 q^{45}+2 q^{44}-4 q^{42}+q^{41}+2 q^{40}-3 q^{38}+2 q^{37}+q^{36}-2 q^{35}-2 q^{34}+4 q^{33}-q^{32}-3 q^{31}+6 q^{29}-3 q^{28}-4 q^{27}+q^{26}+7 q^{25}-3 q^{24}-5 q^{23}+7 q^{21}-q^{20}-4 q^{19}-2 q^{18}+5 q^{17}+q^{16}-2 q^{15}-2 q^{14}+2 q^{13}+q^{12}-q^{10}+q^9</math> |
{{Computer Talk Header}}
coloured_jones_4 = <math>q^{102}-q^{101}+2 q^{97}-3 q^{96}+5 q^{92}-5 q^{91}-q^{90}-2 q^{89}+q^{88}+10 q^{87}-6 q^{86}-2 q^{85}-7 q^{84}+2 q^{83}+17 q^{82}-5 q^{81}-4 q^{80}-14 q^{79}-q^{78}+26 q^{77}-q^{76}-4 q^{75}-23 q^{74}-5 q^{73}+32 q^{72}+3 q^{71}-q^{70}-27 q^{69}-9 q^{68}+31 q^{67}+5 q^{66}+q^{65}-27 q^{64}-9 q^{63}+30 q^{62}+3 q^{61}+q^{60}-24 q^{59}-9 q^{58}+29 q^{57}+q^{56}+q^{55}-20 q^{54}-9 q^{53}+26 q^{52}-2 q^{51}+2 q^{50}-14 q^{49}-8 q^{48}+21 q^{47}-5 q^{46}+2 q^{45}-8 q^{44}-6 q^{43}+17 q^{42}-8 q^{41}+q^{40}-4 q^{39}-3 q^{38}+15 q^{37}-8 q^{36}-q^{35}-4 q^{34}-2 q^{33}+14 q^{32}-5 q^{31}-q^{30}-5 q^{29}-4 q^{28}+11 q^{27}-q^{26}+q^{25}-4 q^{24}-5 q^{23}+6 q^{22}+2 q^{20}-q^{19}-3 q^{18}+2 q^{17}+q^{15}-q^{13}+q^{12}</math> |

coloured_jones_5 = <math>-q^{150}+q^{149}-q^{144}+2 q^{143}-q^{141}-2 q^{138}+4 q^{137}+q^{136}-2 q^{135}-2 q^{133}-4 q^{132}+5 q^{131}+4 q^{130}-q^{129}-5 q^{127}-6 q^{126}+4 q^{125}+9 q^{124}+2 q^{123}-q^{122}-11 q^{121}-9 q^{120}+6 q^{119}+16 q^{118}+7 q^{117}-4 q^{116}-22 q^{115}-14 q^{114}+9 q^{113}+29 q^{112}+17 q^{111}-10 q^{110}-34 q^{109}-24 q^{108}+10 q^{107}+40 q^{106}+31 q^{105}-12 q^{104}-42 q^{103}-31 q^{102}+6 q^{101}+43 q^{100}+38 q^{99}-8 q^{98}-44 q^{97}-33 q^{96}+4 q^{95}+41 q^{94}+38 q^{93}-7 q^{92}-42 q^{91}-32 q^{90}+4 q^{89}+39 q^{88}+35 q^{87}-6 q^{86}-37 q^{85}-32 q^{84}+2 q^{83}+35 q^{82}+34 q^{81}-2 q^{80}-32 q^{79}-31 q^{78}-4 q^{77}+28 q^{76}+34 q^{75}+2 q^{74}-24 q^{73}-28 q^{72}-10 q^{71}+20 q^{70}+31 q^{69}+7 q^{68}-16 q^{67}-22 q^{66}-13 q^{65}+10 q^{64}+24 q^{63}+8 q^{62}-8 q^{61}-14 q^{60}-11 q^{59}+4 q^{58}+15 q^{57}+4 q^{56}-3 q^{55}-7 q^{54}-7 q^{53}+3 q^{52}+10 q^{51}-3 q^{49}-5 q^{48}-4 q^{47}+3 q^{46}+10 q^{45}+q^{44}-3 q^{43}-6 q^{42}-5 q^{41}+9 q^{39}+4 q^{38}+q^{37}-4 q^{36}-7 q^{35}-3 q^{34}+5 q^{33}+3 q^{32}+4 q^{31}-4 q^{29}-4 q^{28}+2 q^{27}+2 q^{25}+2 q^{24}-q^{23}-2 q^{22}+q^{21}+q^{18}-q^{16}+q^{15}</math> |
<table>
coloured_jones_6 = <math>q^{207}-q^{206}-q^{201}+2 q^{200}-2 q^{199}+q^{198}+q^{195}-3 q^{194}+3 q^{193}-4 q^{192}+2 q^{191}+q^{190}+3 q^{188}-3 q^{187}+4 q^{186}-8 q^{185}+2 q^{184}-q^{183}+6 q^{181}+7 q^{179}-12 q^{178}+2 q^{177}-6 q^{176}-3 q^{175}+8 q^{174}+4 q^{173}+13 q^{172}-15 q^{171}+5 q^{170}-12 q^{169}-7 q^{168}+8 q^{167}+5 q^{166}+16 q^{165}-18 q^{164}+11 q^{163}-11 q^{162}-4 q^{161}+8 q^{160}-2 q^{159}+9 q^{158}-29 q^{157}+17 q^{156}+10 q^{154}+17 q^{153}-9 q^{152}-9 q^{151}-51 q^{150}+18 q^{149}+9 q^{148}+30 q^{147}+34 q^{146}-6 q^{145}-22 q^{144}-73 q^{143}+11 q^{142}+8 q^{141}+39 q^{140}+49 q^{139}+3 q^{138}-25 q^{137}-81 q^{136}+5 q^{135}+3 q^{134}+38 q^{133}+53 q^{132}+8 q^{131}-24 q^{130}-79 q^{129}+5 q^{128}+2 q^{127}+35 q^{126}+50 q^{125}+8 q^{124}-21 q^{123}-76 q^{122}+5 q^{121}+q^{120}+33 q^{119}+46 q^{118}+8 q^{117}-13 q^{116}-72 q^{115}+q^{114}-5 q^{113}+27 q^{112}+44 q^{111}+14 q^{110}+q^{109}-66 q^{108}-8 q^{107}-15 q^{106}+18 q^{105}+42 q^{104}+23 q^{103}+17 q^{102}-57 q^{101}-18 q^{100}-28 q^{99}+6 q^{98}+38 q^{97}+32 q^{96}+34 q^{95}-44 q^{94}-22 q^{93}-39 q^{92}-8 q^{91}+28 q^{90}+33 q^{89}+47 q^{88}-27 q^{87}-17 q^{86}-40 q^{85}-19 q^{84}+12 q^{83}+24 q^{82}+49 q^{81}-12 q^{80}-5 q^{79}-30 q^{78}-20 q^{77}-2 q^{76}+9 q^{75}+40 q^{74}-7 q^{73}+5 q^{72}-16 q^{71}-12 q^{70}-7 q^{69}-q^{68}+29 q^{67}-9 q^{66}+5 q^{65}-8 q^{64}-4 q^{63}-6 q^{62}-2 q^{61}+24 q^{60}-9 q^{59}+3 q^{58}-7 q^{57}-3 q^{56}-8 q^{55}-2 q^{54}+22 q^{53}-4 q^{52}+5 q^{51}-4 q^{50}-3 q^{49}-12 q^{48}-6 q^{47}+15 q^{46}-q^{45}+8 q^{44}+q^{43}+q^{42}-10 q^{41}-8 q^{40}+7 q^{39}-3 q^{38}+5 q^{37}+3 q^{36}+4 q^{35}-4 q^{34}-5 q^{33}+3 q^{32}-3 q^{31}+q^{30}+q^{29}+3 q^{28}-q^{27}-2 q^{26}+2 q^{25}-q^{24}+q^{21}-q^{19}+q^{18}</math> |
<tr valign=top>
coloured_jones_7 = |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
computer_talk =
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<table>
</tr>
<tr valign=top>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 3]]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 3]]</nowiki></pre></td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17],
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 2, 9, 1], X[12, 4, 13, 3], X[18, 10, 1, 9], X[10, 18, 11, 17],
X[14, 6, 15, 5], X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 14, 5, 13],
X[14, 6, 15, 5], X[16, 8, 17, 7], X[2, 12, 3, 11], X[4, 14, 5, 13],
X[6, 16, 7, 15]]</nowiki></pre></td></tr>
X[6, 16, 7, 15]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 3]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -7, 2, -8, 5, -9, 6, -1, 3, -4, 7, -2, 8, -5, 9, -6, 4, -3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 3]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 1, 1, 1, 2, -1, 2}]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 3]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 3]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 3 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -7, 2, -8, 5, -9, 6, -1, 3, -4, 7, -2, 8, -5, 9, -6, 4, -3]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[8, 12, 14, 16, 18, 2, 4, 6, 10]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, 1, 1, 1, 1, 2, -1, 2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 3]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 3]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_3_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 3]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 2, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 3]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 3 2 3
-3 + -- - -- + - + 3 t - 3 t + 2 t
-3 + -- - -- + - + 3 t - 3 t + 2 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 3]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 9 z + 9 z + 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 3]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 3]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 3]], KnotSignature[Knot[9, 3]]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, 6}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 9 z + 9 z + 2 z</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 3]][q]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4 5 6 7 8 9 10 11 12
<table><tr align=left>
q - q + 2 q - 2 q + 3 q - 3 q + 3 q - 2 q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 3]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 3]][q]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 14 18 20 22 24 30 32 34 36
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 3]}</nowiki></code></td></tr>
</table>
q + q + q + q + q + 2 q - q - q - q - q</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 3]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 3]], KnotSignature[Knot[9, 3]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{19, 6}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 3]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 4 5 6 7 8 9 10 11 12
q - q + 2 q - 2 q + 3 q - 3 q + 3 q - 2 q + q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 3]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 3]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 10 14 18 20 22 24 30 32 34 36
q + q + q + q + q + 2 q - q - q - q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 3]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 4 6 6
-3 3 -6 4 z 7 z 6 z z 5 z 5 z z z
--- + -- + a - ---- + ---- + ---- - --- + ---- + ---- + -- + --
10 8 10 8 6 10 8 6 8 6
a a a a a a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 3]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2
3 3 -6 2 z z z 4 z z 3 z 11 z 9 z
3 3 -6 2 z z z 4 z z 3 z 11 z 9 z
--- + -- - a - --- + --- - --- - --- - --- + ---- - ----- - ---- +
--- + -- - a - --- + --- - --- - --- - --- + ---- - ----- - ---- +
Line 113: Line 209:
---- + -- + --- + --
---- + -- + --- + --
9 7 10 8
9 7 10 8
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 3]], Vassiliev[3][Knot[9, 3]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 26}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 3]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4 15 4
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 3]], Vassiliev[3][Knot[9, 3]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{9, 26}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 3]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 7 9 2 11 2 11 3 13 3 13 4 15 4
q + q + q t + q t + q t + q t + q t + 2 q t + q t +
q + q + q t + q t + q t + q t + q t + 2 q t + q t +
15 5 17 5 17 6 19 6 21 7 21 8 25 9
15 5 17 5 17 6 19 6 21 7 21 8 25 9
q t + 2 q t + 2 q t + q t + 2 q t + q t + q t</nowiki></pre></td></tr>
q t + 2 q t + 2 q t + q t + 2 q t + q t + q t</nowiki></code></td></tr>
</table>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 3], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 7 9 10 11 12 13 14 15 16
q - q + 3 q - 2 q - 2 q + 5 q - 2 q - 4 q + 6 q - q -
17 18 20 21 22 23 24 26 27
5 q + 6 q - 6 q + 5 q + q - 6 q + 5 q - 4 q + 3 q -
28 29 30 32 33
q - 2 q + 2 q - q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 16:59, 1 September 2005

9 2.gif

9_2

9 4.gif

9_4

9 3.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 3's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 3 at Knotilus!


Knot presentations

Planar diagram presentation X8291 X12,4,13,3 X18,10,1,9 X10,18,11,17 X14,6,15,5 X16,8,17,7 X2,12,3,11 X4,14,5,13 X6,16,7,15
Gauss code 1, -7, 2, -8, 5, -9, 6, -1, 3, -4, 7, -2, 8, -5, 9, -6, 4, -3
Dowker-Thistlethwaite code 8 12 14 16 18 2 4 6 10
Conway Notation [63]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

9 3 ML.gif 9 3 AP.gif
[{4, 11}, {3, 5}, {6, 4}, {5, 10}, {2, 6}, {11, 9}, {10, 8}, {9, 7}, {1, 3}, {8, 2}, {7, 1}]

[edit Notes on presentations of 9 3]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [5][-16]
Hyperbolic Volume 4.99486
A-Polynomial See Data:9 3/A-polynomial

[edit Notes for 9 3's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 9 3's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 19, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (9, 26)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 9 3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
25         1-1
23          0
21       21 -1
19      1   1
17     22   0
15    11    0
13   12     1
11  11      0
9  1       1
711        0
51         1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials