9 14: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=9_14}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 9 | |
|||
k = 14 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,9,-7,8,-6,3,-4,2,-5,6,-8,7,-9,5/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 5 | |
|||
braid_index = 5 | |
|||
same_alexander = | |
|||
same_jones = [[K11n53]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{18}-2 q^{17}-q^{16}+6 q^{15}-5 q^{14}-6 q^{13}+15 q^{12}-5 q^{11}-16 q^{10}+23 q^9-2 q^8-27 q^7+28 q^6+4 q^5-34 q^4+27 q^3+9 q^2-33 q+21+9 q^{-1} -23 q^{-2} +13 q^{-3} +5 q^{-4} -11 q^{-5} +6 q^{-6} + q^{-7} -3 q^{-8} + q^{-9} </math> | |
|||
coloured_jones_3 = <math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+5 q^{32}-4 q^{31}-9 q^{30}+3 q^{29}+17 q^{28}-q^{27}-23 q^{26}-7 q^{25}+30 q^{24}+16 q^{23}-34 q^{22}-27 q^{21}+32 q^{20}+41 q^{19}-30 q^{18}-49 q^{17}+21 q^{16}+60 q^{15}-14 q^{14}-65 q^{13}+3 q^{12}+70 q^{11}+8 q^{10}-73 q^9-18 q^8+72 q^7+29 q^6-71 q^5-33 q^4+61 q^3+41 q^2-58 q-34+42 q^{-1} +34 q^{-2} -37 q^{-3} -20 q^{-4} +23 q^{-5} +17 q^{-6} -21 q^{-7} -5 q^{-8} +12 q^{-9} +4 q^{-10} -11 q^{-11} + q^{-12} +6 q^{-13} - q^{-14} -3 q^{-15} - q^{-16} +3 q^{-17} - q^{-18} </math> | |
|||
coloured_jones_4 = <math>q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+6 q^{55}-8 q^{54}-7 q^{53}+2 q^{52}+3 q^{51}+26 q^{50}-12 q^{49}-23 q^{48}-11 q^{47}-5 q^{46}+63 q^{45}+3 q^{44}-29 q^{43}-38 q^{42}-46 q^{41}+93 q^{40}+35 q^{39}-50 q^{37}-112 q^{36}+86 q^{35}+48 q^{34}+58 q^{33}-18 q^{32}-166 q^{31}+49 q^{30}+14 q^{29}+107 q^{28}+52 q^{27}-177 q^{26}+12 q^{25}-58 q^{24}+124 q^{23}+128 q^{22}-152 q^{21}-8 q^{20}-140 q^{19}+115 q^{18}+193 q^{17}-109 q^{16}-20 q^{15}-215 q^{14}+98 q^{13}+243 q^{12}-59 q^{11}-26 q^{10}-273 q^9+67 q^8+266 q^7-4 q^6-15 q^5-295 q^4+22 q^3+240 q^2+34 q+23-256 q^{-1} -20 q^{-2} +164 q^{-3} +35 q^{-4} +61 q^{-5} -170 q^{-6} -30 q^{-7} +80 q^{-8} +3 q^{-9} +69 q^{-10} -82 q^{-11} -14 q^{-12} +28 q^{-13} -23 q^{-14} +48 q^{-15} -29 q^{-16} +2 q^{-17} +8 q^{-18} -25 q^{-19} +23 q^{-20} -8 q^{-21} +5 q^{-22} +3 q^{-23} -12 q^{-24} +6 q^{-25} -2 q^{-26} +3 q^{-27} + q^{-28} -3 q^{-29} + q^{-30} </math> | |
|||
coloured_jones_5 = <math>q^{90}-2 q^{89}-q^{88}+2 q^{87}+q^{86}+2 q^{85}+2 q^{84}-6 q^{83}-9 q^{82}+2 q^{81}+7 q^{80}+11 q^{79}+12 q^{78}-9 q^{77}-29 q^{76}-20 q^{75}+6 q^{74}+33 q^{73}+46 q^{72}+15 q^{71}-46 q^{70}-69 q^{69}-41 q^{68}+30 q^{67}+93 q^{66}+84 q^{65}-4 q^{64}-97 q^{63}-122 q^{62}-49 q^{61}+81 q^{60}+149 q^{59}+99 q^{58}-31 q^{57}-145 q^{56}-150 q^{55}-34 q^{54}+112 q^{53}+169 q^{52}+98 q^{51}-36 q^{50}-152 q^{49}-159 q^{48}-51 q^{47}+101 q^{46}+175 q^{45}+145 q^{44}+6 q^{43}-174 q^{42}-234 q^{41}-108 q^{40}+115 q^{39}+290 q^{38}+248 q^{37}-39 q^{36}-334 q^{35}-360 q^{34}-65 q^{33}+337 q^{32}+481 q^{31}+175 q^{30}-335 q^{29}-575 q^{28}-283 q^{27}+314 q^{26}+661 q^{25}+386 q^{24}-294 q^{23}-738 q^{22}-477 q^{21}+273 q^{20}+802 q^{19}+568 q^{18}-251 q^{17}-869 q^{16}-644 q^{15}+225 q^{14}+906 q^{13}+737 q^{12}-183 q^{11}-951 q^{10}-787 q^9+120 q^8+922 q^7+866 q^6-38 q^5-899 q^4-868 q^3-49 q^2+772 q+880+147 q^{-1} -674 q^{-2} -794 q^{-3} -212 q^{-4} +491 q^{-5} +716 q^{-6} +257 q^{-7} -368 q^{-8} -560 q^{-9} -260 q^{-10} +207 q^{-11} +448 q^{-12} +235 q^{-13} -130 q^{-14} -291 q^{-15} -192 q^{-16} +34 q^{-17} +207 q^{-18} +146 q^{-19} -18 q^{-20} -106 q^{-21} -96 q^{-22} -22 q^{-23} +63 q^{-24} +67 q^{-25} +14 q^{-26} -25 q^{-27} -35 q^{-28} -18 q^{-29} +6 q^{-30} +20 q^{-31} +16 q^{-32} -4 q^{-33} -10 q^{-34} -2 q^{-35} -7 q^{-36} +3 q^{-37} +8 q^{-38} -3 q^{-40} +2 q^{-41} -3 q^{-42} - q^{-43} +3 q^{-44} - q^{-45} </math> | |
|||
coloured_jones_6 = <math>q^{126}-2 q^{125}-q^{124}+2 q^{123}+q^{122}+2 q^{121}-2 q^{120}+4 q^{119}-8 q^{118}-9 q^{117}+5 q^{116}+6 q^{115}+12 q^{114}+16 q^{112}-22 q^{111}-35 q^{110}-9 q^{109}+5 q^{108}+36 q^{107}+21 q^{106}+70 q^{105}-21 q^{104}-79 q^{103}-68 q^{102}-48 q^{101}+30 q^{100}+43 q^{99}+193 q^{98}+62 q^{97}-60 q^{96}-133 q^{95}-165 q^{94}-86 q^{93}-49 q^{92}+295 q^{91}+209 q^{90}+108 q^{89}-57 q^{88}-200 q^{87}-245 q^{86}-311 q^{85}+201 q^{84}+214 q^{83}+285 q^{82}+170 q^{81}+27 q^{80}-189 q^{79}-516 q^{78}-37 q^{77}-79 q^{76}+170 q^{75}+243 q^{74}+381 q^{73}+195 q^{72}-341 q^{71}-51 q^{70}-447 q^{69}-301 q^{68}-148 q^{67}+447 q^{66}+615 q^{65}+212 q^{64}+436 q^{63}-453 q^{62}-784 q^{61}-930 q^{60}-15 q^{59}+645 q^{58}+765 q^{57}+1296 q^{56}+92 q^{55}-879 q^{54}-1711 q^{53}-848 q^{52}+151 q^{51}+960 q^{50}+2146 q^{49}+1001 q^{48}-494 q^{47}-2172 q^{46}-1702 q^{45}-668 q^{44}+748 q^{43}+2720 q^{42}+1943 q^{41}+167 q^{40}-2283 q^{39}-2349 q^{38}-1514 q^{37}+326 q^{36}+3007 q^{35}+2713 q^{34}+832 q^{33}-2217 q^{32}-2784 q^{31}-2212 q^{30}-69 q^{29}+3160 q^{28}+3299 q^{27}+1356 q^{26}-2150 q^{25}-3128 q^{24}-2763 q^{23}-352 q^{22}+3297 q^{21}+3795 q^{20}+1786 q^{19}-2085 q^{18}-3443 q^{17}-3262 q^{16}-644 q^{15}+3332 q^{14}+4210 q^{13}+2258 q^{12}-1817 q^{11}-3570 q^{10}-3697 q^9-1116 q^8+3007 q^7+4328 q^6+2736 q^5-1174 q^4-3219 q^3-3810 q^2-1684 q+2192+3857 q^{-1} +2909 q^{-2} -334 q^{-3} -2323 q^{-4} -3321 q^{-5} -1975 q^{-6} +1165 q^{-7} +2814 q^{-8} +2515 q^{-9} +269 q^{-10} -1243 q^{-11} -2327 q^{-12} -1750 q^{-13} +391 q^{-14} +1636 q^{-15} +1707 q^{-16} +415 q^{-17} -438 q^{-18} -1290 q^{-19} -1195 q^{-20} +47 q^{-21} +765 q^{-22} +919 q^{-23} +276 q^{-24} -49 q^{-25} -574 q^{-26} -664 q^{-27} -20 q^{-28} +291 q^{-29} +409 q^{-30} +117 q^{-31} +64 q^{-32} -207 q^{-33} -323 q^{-34} -9 q^{-35} +87 q^{-36} +155 q^{-37} +33 q^{-38} +67 q^{-39} -58 q^{-40} -139 q^{-41} + q^{-42} +14 q^{-43} +50 q^{-44} +2 q^{-45} +41 q^{-46} -11 q^{-47} -49 q^{-48} +4 q^{-49} -3 q^{-50} +14 q^{-51} -5 q^{-52} +17 q^{-53} - q^{-54} -14 q^{-55} +4 q^{-56} -3 q^{-57} +3 q^{-58} -2 q^{-59} +3 q^{-60} + q^{-61} -3 q^{-62} + q^{-63} </math> | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 14]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[13, 18, 14, 1], X[9, 15, 10, 14], X[7, 17, 8, 16], X[15, 9, 16, 8], |
|||
X[17, 7, 18, 6]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 14]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 14]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 16, 14, 2, 18, 8, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 14]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, 1, 2, -1, -3, 2, -3, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 14]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 14]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_14_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 14]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, {4, 7}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 14]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 9 2 |
|||
15 + -- - - - 9 t + 2 t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 14]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 14]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 14]], KnotSignature[Knot[9, 14]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{37, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 14]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 4 2 3 4 5 6 |
|||
6 - q + -- - - - 6 q + 6 q - 5 q + 3 q - 2 q + q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 14], Knot[11, NonAlternating, 53]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 14]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 -8 -6 -4 2 2 4 8 10 12 16 18 |
|||
-q + q + q - q + -- + q + q + q - 2 q - q - q + q + |
|||
2 |
|||
q |
|||
20 |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 14]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 |
|||
-6 2 -2 2 2 z z 2 2 4 z |
|||
1 + a - -- + a + z - ---- + -- - a z + z + -- |
|||
4 4 2 2 |
|||
a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 14]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 |
|||
-6 2 -2 3 z 5 z 2 z 4 z 10 z 8 z 2 2 |
|||
1 - a - -- - a - --- - --- - --- + ---- + ----- + ---- - 2 a z + |
|||
4 5 3 a 6 4 2 |
|||
a a a a a a |
|||
3 3 3 4 4 4 |
|||
9 z 15 z 2 z 3 3 3 4 4 z 9 z 12 z |
|||
---- + ----- + ---- - 3 a z + a z - 4 z - ---- - ---- - ----- + |
|||
5 3 a 6 4 2 |
|||
a a a a a |
|||
5 5 5 6 6 7 |
|||
2 4 8 z 16 z 4 z 5 6 z 3 z 2 z |
|||
3 a z - ---- - ----- - ---- + 4 a z + 4 z + -- + ---- + ---- + |
|||
5 3 a 6 2 5 |
|||
a a a a a |
|||
7 7 8 8 |
|||
5 z 3 z z z |
|||
---- + ---- + -- + -- |
|||
3 a 4 2 |
|||
a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 14]], Vassiliev[3][Knot[9, 14]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 14]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4 1 2 1 2 2 3 |
|||
- + 3 q + ----- + ----- + ----- + ---- + --- + 3 q t + 3 q t + |
|||
q 7 3 5 2 3 2 3 q t |
|||
q t q t q t q t |
|||
3 2 5 2 5 3 7 3 7 4 9 4 9 5 |
|||
3 q t + 3 q t + 2 q t + 3 q t + q t + 2 q t + q t + |
|||
11 5 13 6 |
|||
q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 14], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 3 -7 6 11 5 13 23 9 2 |
|||
21 + q - -- + q + -- - -- + -- + -- - -- + - - 33 q + 9 q + |
|||
8 6 5 4 3 2 q |
|||
q q q q q q |
|||
3 4 5 6 7 8 9 10 |
|||
27 q - 34 q + 4 q + 28 q - 27 q - 2 q + 23 q - 16 q - |
|||
11 12 13 14 15 16 17 18 |
|||
5 q + 15 q - 6 q - 5 q + 6 q - q - 2 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:05, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6 |
Gauss code | -1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5 |
Dowker-Thistlethwaite code | 4 10 12 16 14 2 18 8 6 |
Conway Notation | [41112] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 1}, {6, 2}, {5, 7}, {8, 6}, {7, 10}, {1, 8}] |
[edit Notes on presentations of 9 14]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 12 16 14 2 18 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[41112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 1}, {6, 2}, {5, 7}, {8, 6}, {7, 10}, {1, 8}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n53,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 14"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n53,} |
Vassiliev invariants
V2 and V3: | (-1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|