9 32: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->

{{Rolfsen Knot Page|
<!-- provide an anchor so we can return to the top of the page -->
n = 9 |
<span id="top"></span>
k = 32 |

KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-7,9,-5,3,-4,6,-8,7,-2,5,-6,8,-9,2/goTop.html |
<!-- this relies on transclusion for next and previous links -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
{{Knot Navigation Links|ext=gif}}
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>

<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
{| align=left
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
|- valign=top
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
|[[Image:{{PAGENAME}}.gif]]
</table> |
|{{Rolfsen Knot Site Links|n=9|k=32|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-7,9,-5,3,-4,6,-8,7,-2,5,-6,8,-9,2/goTop.html}}
braid_crossings = 9 |
|{{:{{PAGENAME}} Quick Notes}}
braid_width = 4 |
|}
braid_index = 4 |

same_alexander = [[K11n52]], [[K11n124]], |
<br style="clear:both" />
same_jones = |

khovanov_table = <table border=1>
{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
Line 47: Line 39:
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>
</table> |
coloured_jones_2 = <math>q^{20}-3 q^{19}+2 q^{18}+7 q^{17}-18 q^{16}+8 q^{15}+29 q^{14}-50 q^{13}+8 q^{12}+67 q^{11}-80 q^{10}-4 q^9+97 q^8-87 q^7-20 q^6+102 q^5-69 q^4-32 q^3+82 q^2-37 q-32+46 q^{-1} -9 q^{-2} -19 q^{-3} +14 q^{-4} + q^{-5} -4 q^{-6} + q^{-7} </math> |

coloured_jones_3 = <math>q^{39}-3 q^{38}+2 q^{37}+3 q^{36}-2 q^{35}-11 q^{34}+9 q^{33}+25 q^{32}-20 q^{31}-53 q^{30}+32 q^{29}+101 q^{28}-34 q^{27}-175 q^{26}+25 q^{25}+259 q^{24}+8 q^{23}-344 q^{22}-69 q^{21}+426 q^{20}+134 q^{19}-475 q^{18}-210 q^{17}+503 q^{16}+275 q^{15}-499 q^{14}-331 q^{13}+472 q^{12}+371 q^{11}-425 q^{10}-392 q^9+353 q^8+405 q^7-276 q^6-389 q^5+180 q^4+368 q^3-103 q^2-306 q+18+248 q^{-1} +26 q^{-2} -168 q^{-3} -56 q^{-4} +105 q^{-5} +52 q^{-6} -47 q^{-7} -44 q^{-8} +21 q^{-9} +22 q^{-10} -4 q^{-11} -9 q^{-12} - q^{-13} +4 q^{-14} - q^{-15} </math> |
{{Computer Talk Header}}
coloured_jones_4 = <math>q^{64}-3 q^{63}+2 q^{62}+3 q^{61}-6 q^{60}+5 q^{59}-10 q^{58}+15 q^{57}+14 q^{56}-40 q^{55}+q^{54}-22 q^{53}+87 q^{52}+79 q^{51}-150 q^{50}-105 q^{49}-102 q^{48}+310 q^{47}+377 q^{46}-268 q^{45}-455 q^{44}-516 q^{43}+593 q^{42}+1115 q^{41}-64 q^{40}-931 q^{39}-1487 q^{38}+552 q^{37}+2099 q^{36}+696 q^{35}-1097 q^{34}-2744 q^{33}-33 q^{32}+2802 q^{31}+1724 q^{30}-744 q^{29}-3700 q^{28}-876 q^{27}+2926 q^{26}+2518 q^{25}-92 q^{24}-4058 q^{23}-1581 q^{22}+2584 q^{21}+2870 q^{20}+575 q^{19}-3875 q^{18}-2023 q^{17}+1935 q^{16}+2842 q^{15}+1195 q^{14}-3257 q^{13}-2243 q^{12}+1045 q^{11}+2467 q^{10}+1725 q^9-2243 q^8-2162 q^7+51 q^6+1710 q^5+1947 q^4-1032 q^3-1637 q^2-667 q+728+1619 q^{-1} -76 q^{-2} -805 q^{-3} -782 q^{-4} -31 q^{-5} +900 q^{-6} +270 q^{-7} -137 q^{-8} -441 q^{-9} -258 q^{-10} +286 q^{-11} +171 q^{-12} +87 q^{-13} -116 q^{-14} -146 q^{-15} +39 q^{-16} +33 q^{-17} +51 q^{-18} -6 q^{-19} -34 q^{-20} + q^{-21} - q^{-22} +9 q^{-23} + q^{-24} -4 q^{-25} + q^{-26} </math> |

coloured_jones_5 = <math>q^{95}-3 q^{94}+2 q^{93}+3 q^{92}-6 q^{91}+q^{90}+6 q^{89}-4 q^{88}+4 q^{87}+4 q^{86}-27 q^{85}-12 q^{84}+35 q^{83}+42 q^{82}+31 q^{81}-40 q^{80}-147 q^{79}-121 q^{78}+96 q^{77}+331 q^{76}+313 q^{75}-76 q^{74}-641 q^{73}-776 q^{72}-93 q^{71}+1058 q^{70}+1597 q^{69}+624 q^{68}-1439 q^{67}-2825 q^{66}-1766 q^{65}+1513 q^{64}+4399 q^{63}+3700 q^{62}-1007 q^{61}-6020 q^{60}-6374 q^{59}-458 q^{58}+7327 q^{57}+9628 q^{56}+2926 q^{55}-7951 q^{54}-12993 q^{53}-6252 q^{52}+7577 q^{51}+16014 q^{50}+10142 q^{49}-6238 q^{48}-18374 q^{47}-13982 q^{46}+4127 q^{45}+19690 q^{44}+17518 q^{43}-1572 q^{42}-20169 q^{41}-20281 q^{40}-1026 q^{39}+19787 q^{38}+22257 q^{37}+3477 q^{36}-18914 q^{35}-23432 q^{34}-5581 q^{33}+17645 q^{32}+23966 q^{31}+7369 q^{30}-16121 q^{29}-23994 q^{28}-8927 q^{27}+14376 q^{26}+23593 q^{25}+10339 q^{24}-12308 q^{23}-22814 q^{22}-11685 q^{21}+9928 q^{20}+21529 q^{19}+12916 q^{18}-7094 q^{17}-19764 q^{16}-13903 q^{15}+4052 q^{14}+17236 q^{13}+14444 q^{12}-768 q^{11}-14220 q^{10}-14289 q^9-2159 q^8+10566 q^7+13250 q^6+4705 q^5-6881 q^4-11406 q^3-6139 q^2+3275 q+8853+6687 q^{-1} -448 q^{-2} -6065 q^{-3} -6075 q^{-4} -1530 q^{-5} +3414 q^{-6} +4880 q^{-7} +2365 q^{-8} -1320 q^{-9} -3277 q^{-10} -2453 q^{-11} -10 q^{-12} +1886 q^{-13} +1903 q^{-14} +607 q^{-15} -754 q^{-16} -1269 q^{-17} -720 q^{-18} +189 q^{-19} +656 q^{-20} +522 q^{-21} +99 q^{-22} -262 q^{-23} -331 q^{-24} -123 q^{-25} +81 q^{-26} +144 q^{-27} +81 q^{-28} +3 q^{-29} -52 q^{-30} -54 q^{-31} - q^{-32} +19 q^{-33} +11 q^{-34} +4 q^{-35} + q^{-36} -9 q^{-37} - q^{-38} +4 q^{-39} - q^{-40} </math> |
<table>
coloured_jones_6 = <math>q^{132}-3 q^{131}+2 q^{130}+3 q^{129}-6 q^{128}+q^{127}+2 q^{126}+12 q^{125}-15 q^{124}-6 q^{123}+17 q^{122}-30 q^{121}+4 q^{120}+31 q^{119}+65 q^{118}-36 q^{117}-75 q^{116}-17 q^{115}-136 q^{114}+21 q^{113}+227 q^{112}+387 q^{111}+45 q^{110}-325 q^{109}-451 q^{108}-838 q^{107}-198 q^{106}+889 q^{105}+1910 q^{104}+1288 q^{103}-320 q^{102}-1953 q^{101}-4001 q^{100}-2719 q^{99}+1130 q^{98}+5982 q^{97}+7019 q^{96}+3609 q^{95}-2908 q^{94}-11755 q^{93}-12929 q^{92}-5042 q^{91}+9892 q^{90}+20073 q^{89}+19301 q^{88}+5530 q^{87}-19619 q^{86}-34059 q^{85}-27884 q^{84}+1648 q^{83}+33577 q^{82}+49646 q^{81}+35307 q^{80}-12472 q^{79}-56251 q^{78}-68728 q^{77}-31404 q^{76}+29748 q^{75}+81352 q^{74}+84964 q^{73}+21832 q^{72}-59742 q^{71}-110550 q^{70}-84404 q^{69}-1980 q^{68}+93434 q^{67}+134097 q^{66}+74956 q^{65}-35893 q^{64}-131885 q^{63}-134970 q^{62}-50512 q^{61}+79231 q^{60}+161902 q^{59}+124029 q^{58}+2940 q^{57}-127781 q^{56}-164451 q^{55}-94293 q^{54}+51048 q^{53}+165275 q^{52}+153502 q^{51}+38125 q^{50}-109645 q^{49}-171876 q^{48}-121540 q^{47}+23969 q^{46}+154579 q^{45}+164354 q^{44}+61828 q^{43}-89099 q^{42}-166670 q^{41}-135004 q^{40}+2412 q^{39}+138590 q^{38}+165053 q^{37}+78198 q^{36}-67952 q^{35}-155281 q^{34}-142225 q^{33}-18612 q^{32}+117220 q^{31}+159998 q^{30}+93712 q^{29}-40914 q^{28}-135979 q^{27}-145520 q^{26}-44187 q^{25}+85033 q^{24}+145596 q^{23}+108204 q^{22}-4583 q^{21}-102796 q^{20}-138786 q^{19}-71117 q^{18}+40159 q^{17}+114625 q^{16}+112292 q^{15}+34544 q^{14}-54804 q^{13}-112907 q^{12}-86365 q^{11}-7813 q^{10}+66676 q^9+94702 q^8+59951 q^7-4087 q^6-68014 q^5-77020 q^4-39655 q^3+16095 q^2+56492 q+58074+28574 q^{-1} -20644 q^{-2} -45896 q^{-3} -42500 q^{-4} -15598 q^{-5} +16165 q^{-6} +34152 q^{-7} +32323 q^{-8} +7842 q^{-9} -13086 q^{-10} -24431 q^{-11} -20201 q^{-12} -6222 q^{-13} +9095 q^{-14} +17942 q^{-15} +12261 q^{-16} +3608 q^{-17} -6096 q^{-18} -10190 q^{-19} -8666 q^{-20} -2333 q^{-21} +4520 q^{-22} +5656 q^{-23} +4916 q^{-24} +1259 q^{-25} -1819 q^{-26} -3733 q^{-27} -2765 q^{-28} -291 q^{-29} +799 q^{-30} +1798 q^{-31} +1315 q^{-32} +512 q^{-33} -660 q^{-34} -888 q^{-35} -437 q^{-36} -245 q^{-37} +233 q^{-38} +334 q^{-39} +324 q^{-40} -11 q^{-41} -118 q^{-42} -77 q^{-43} -110 q^{-44} -10 q^{-45} +27 q^{-46} +73 q^{-47} +4 q^{-48} -12 q^{-49} +4 q^{-50} -16 q^{-51} -4 q^{-52} - q^{-53} +9 q^{-54} + q^{-55} -4 q^{-56} + q^{-57} </math> |
<tr valign=top>
coloured_jones_7 = <math>q^{175}-3 q^{174}+2 q^{173}+3 q^{172}-6 q^{171}+q^{170}+2 q^{169}+8 q^{168}+q^{167}-25 q^{166}+7 q^{165}+14 q^{164}-14 q^{163}+10 q^{162}+13 q^{161}+39 q^{160}-122 q^{158}-44 q^{157}+18 q^{156}+25 q^{155}+151 q^{154}+148 q^{153}+179 q^{152}-44 q^{151}-557 q^{150}-553 q^{149}-334 q^{148}+145 q^{147}+1000 q^{146}+1347 q^{145}+1318 q^{144}+214 q^{143}-2076 q^{142}-3397 q^{141}-3455 q^{140}-1292 q^{139}+3115 q^{138}+6743 q^{137}+8395 q^{136}+5285 q^{135}-3214 q^{134}-12095 q^{133}-17673 q^{132}-14436 q^{131}-342 q^{130}+17614 q^{129}+32371 q^{128}+32798 q^{127}+12676 q^{126}-19664 q^{125}-51986 q^{124}-63534 q^{123}-40070 q^{122}+11067 q^{121}+71544 q^{120}+107217 q^{119}+89212 q^{118}+18600 q^{117}-81855 q^{116}-159932 q^{115}-163410 q^{114}-79204 q^{113}+69749 q^{112}+210456 q^{111}+259411 q^{110}+177698 q^{109}-20488 q^{108}-243093 q^{107}-366766 q^{106}-313090 q^{105}-75419 q^{104}+240410 q^{103}+466810 q^{102}+474676 q^{101}+220283 q^{100}-188080 q^{99}-539814 q^{98}-644240 q^{97}-404663 q^{96}+81887 q^{95}+568344 q^{94}+798380 q^{93}+610234 q^{92}+72472 q^{91}-543085 q^{90}-917388 q^{89}-814225 q^{88}-258583 q^{87}+466948 q^{86}+988216 q^{85}+993376 q^{84}+454830 q^{83}-350667 q^{82}-1007602 q^{81}-1133393 q^{80}-640204 q^{79}+213254 q^{78}+983011 q^{77}+1226367 q^{76}+797405 q^{75}-72075 q^{74}-926425 q^{73}-1275408 q^{72}-919017 q^{71}-56996 q^{70}+853575 q^{69}+1288481 q^{68}+1003430 q^{67}+165485 q^{66}-776310 q^{65}-1277125 q^{64}-1056639 q^{63}-251190 q^{62}+703612 q^{61}+1252009 q^{60}+1086812 q^{59}+317114 q^{58}-638364 q^{57}-1220714 q^{56}-1103145 q^{55}-369907 q^{54}+579062 q^{53}+1187340 q^{52}+1113068 q^{51}+417185 q^{50}-521047 q^{49}-1151735 q^{48}-1120943 q^{47}-466067 q^{46}+457494 q^{45}+1110493 q^{44}+1128133 q^{43}+521580 q^{42}-381833 q^{41}-1057824 q^{40}-1131910 q^{39}-585697 q^{38}+288357 q^{37}+986871 q^{36}+1126789 q^{35}+656067 q^{34}-174596 q^{33}-890498 q^{32}-1104431 q^{31}-726912 q^{30}+41884 q^{29}+765105 q^{28}+1055734 q^{27}+786917 q^{26}+102804 q^{25}-609132 q^{24}-972385 q^{23}-824806 q^{22}-247638 q^{21}+429692 q^{20}+850811 q^{19}+826008 q^{18}+376048 q^{17}-237132 q^{16}-692579 q^{15}-783220 q^{14}-471908 q^{13}+51082 q^{12}+508938 q^{11}+692548 q^{10}+519701 q^9+110089 q^8-315866 q^7-562486 q^6-514084 q^5-227070 q^4+136576 q^3+407418 q^2+456726 q+289913+10048 q^{-1} -249838 q^{-2} -362267 q^{-3} -297100 q^{-4} -108674 q^{-5} +110713 q^{-6} +249742 q^{-7} +259807 q^{-8} +155997 q^{-9} -7231 q^{-10} -141472 q^{-11} -194768 q^{-12} -158264 q^{-13} -54934 q^{-14} +54368 q^{-15} +123208 q^{-16} +130419 q^{-17} +77577 q^{-18} +2657 q^{-19} -60293 q^{-20} -89229 q^{-21} -73055 q^{-22} -30554 q^{-23} +16850 q^{-24} +49846 q^{-25} +53589 q^{-26} +35681 q^{-27} +7106 q^{-28} -20034 q^{-29} -31954 q^{-30} -29028 q^{-31} -15014 q^{-32} +3251 q^{-33} +14636 q^{-34} +18046 q^{-35} +13731 q^{-36} +4079 q^{-37} -4078 q^{-38} -9107 q^{-39} -9313 q^{-40} -4946 q^{-41} -389 q^{-42} +3232 q^{-43} +4792 q^{-44} +3582 q^{-45} +1738 q^{-46} -545 q^{-47} -2123 q^{-48} -1942 q^{-49} -1286 q^{-50} -242 q^{-51} +602 q^{-52} +753 q^{-53} +771 q^{-54} +403 q^{-55} -146 q^{-56} -297 q^{-57} -325 q^{-58} -175 q^{-59} +9 q^{-60} +17 q^{-61} +115 q^{-62} +115 q^{-63} +22 q^{-64} -20 q^{-65} -48 q^{-66} -23 q^{-67} +9 q^{-68} -11 q^{-69} + q^{-70} +16 q^{-71} +4 q^{-72} + q^{-73} -9 q^{-74} - q^{-75} +4 q^{-76} - q^{-77} </math> |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
computer_talk =
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<table>
</tr>
<tr valign=top>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 32]]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 32]]</nowiki></pre></td></tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[13, 18, 14, 1], X[3, 9, 4, 8], X[9, 3, 10, 2],
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 32]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[13, 18, 14, 1], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[7, 15, 8, 14], X[15, 11, 16, 10], X[5, 12, 6, 13],
X[7, 15, 8, 14], X[15, 11, 16, 10], X[5, 12, 6, 13],
X[11, 17, 12, 16], X[17, 7, 18, 6]]</nowiki></pre></td></tr>
X[11, 17, 12, 16], X[17, 7, 18, 6]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 32]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -7, 9, -5, 3, -4, 6, -8, 7, -2, 5, -6, 8, -9, 2]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 32]]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, -2, 1, -2, 1, 3, -2, 3}]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 32]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 32]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 6 14 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -7, 9, -5, 3, -4, 6, -8, 7, -2, 5, -6, 8, -9, 2]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 32]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 14, 2, 16, 18, 10, 6]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 32]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, -2, 1, -2, 1, 3, -2, 3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 32]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 32]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_32_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 32]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 3, 3, {4, 6}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 32]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 6 14 2 3
-17 + t - -- + -- + 14 t - 6 t + t
-17 + t - -- + -- + 14 t - 6 t + t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 32]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 - z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 32]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 32], Knot[11, NonAlternating, 52],
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6
1 - z + z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 32], Knot[11, NonAlternating, 52],
Knot[11, NonAlternating, 124]}</nowiki></pre></td></tr>
Knot[11, NonAlternating, 124]}</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 32]], KnotSignature[Knot[9, 32]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{59, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 32]][q]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2 3 4 5 6 7
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 32]], KnotSignature[Knot[9, 32]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{59, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 32]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 4 2 3 4 5 6 7
-6 - q + - + 9 q - 10 q + 10 q - 9 q + 6 q - 3 q + q
-6 - q + - + 9 q - 10 q + 10 q - 9 q + 6 q - 3 q + q
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 32]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 32]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 2 4 6 8 14 16 18 22
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 32]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 32]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 2 2 4 6 8 14 16 18 22
1 - q + -- + 3 q - 2 q + 2 q - 2 q - 2 q + 2 q - q + q
1 - q + -- + 3 q - 2 q + 2 q - 2 q - 2 q + 2 q - q + q
4
4
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 32]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 32]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 6
-6 2 -2 2 z 4 z 3 z 4 2 z 3 z z
1 + a - -- + a - z + -- - ---- + ---- - z - ---- + ---- + --
4 6 4 2 4 2 2
a a a a a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 32]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2
-6 2 -2 z 2 z z 2 z 4 z 12 z 10 z
-6 2 -2 z 2 z z 2 z 4 z 12 z 10 z
1 - a - -- - a + -- - --- - - + 3 z - -- + ---- + ----- + ----- -
1 - a - -- - a + -- - --- - - + 3 z - -- + ---- + ----- + ----- -
Line 118: Line 215:
---- + ----- + ---- + ---- + ----
---- + ----- + ---- + ---- + ----
5 3 a 4 2
5 3 a 4 2
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 32]], Vassiliev[3][Knot[9, 32]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 32]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 3 1 3 3 q 3 5
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 32]], Vassiliev[3][Knot[9, 32]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 32]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 3 1 3 3 q 3 5
6 q + 4 q + ----- + ----- + ---- + --- + --- + 5 q t + 5 q t +
6 q + 4 q + ----- + ----- + ---- + --- + --- + 5 q t + 5 q t +
5 3 3 2 2 q t t
5 3 3 2 2 q t t
Line 131: Line 238:
13 5 15 6
13 5 15 6
2 q t + q t</nowiki></pre></td></tr>
2 q t + q t</nowiki></code></td></tr>
</table>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 32], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 4 -5 14 19 9 46 2 3
-32 + q - -- + q + -- - -- - -- + -- - 37 q + 82 q - 32 q -
6 4 3 2 q
q q q q
4 5 6 7 8 9 10 11
69 q + 102 q - 20 q - 87 q + 97 q - 4 q - 80 q + 67 q +
12 13 14 15 16 17 18 19 20
8 q - 50 q + 29 q + 8 q - 18 q + 7 q + 2 q - 3 q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:03, 1 September 2005

9 31.gif

9_31

9 33.gif

9_33

9 32.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 32's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 32 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X13,18,14,1 X3948 X9,3,10,2 X7,15,8,14 X15,11,16,10 X5,12,6,13 X11,17,12,16 X17,7,18,6
Gauss code -1, 4, -3, 1, -7, 9, -5, 3, -4, 6, -8, 7, -2, 5, -6, 8, -9, 2
Dowker-Thistlethwaite code 4 8 12 14 2 16 18 10 6
Conway Notation [.21.20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

9 32 ML.gif 9 32 AP.gif
[{11, 8}, {3, 9}, {7, 2}, {8, 4}, {6, 3}, {4, 1}, {5, 7}, {2, 6}, {10, 5}, {9, 11}, {1, 10}]

[edit Notes on presentations of 9 32]


Three dimensional invariants

Symmetry type Chiral
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-2][-9]
Hyperbolic Volume 13.0999
A-Polynomial See Data:9 32/A-polynomial

[edit Notes for 9 32's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for 9 32's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 59, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^8 a^{-2} +2 z^8 a^{-4} +5 z^7 a^{-1} +10 z^7 a^{-3} +5 z^7 a^{-5} +6 z^6 a^{-2} +7 z^6 a^{-4} +5 z^6 a^{-6} +4 z^6+a z^5-9 z^5 a^{-1} -18 z^5 a^{-3} -5 z^5 a^{-5} +3 z^5 a^{-7} -19 z^4 a^{-2} -18 z^4 a^{-4} -6 z^4 a^{-6} +z^4 a^{-8} -8 z^4-a z^3+3 z^3 a^{-1} +9 z^3 a^{-3} +2 z^3 a^{-5} -3 z^3 a^{-7} +10 z^2 a^{-2} +12 z^2 a^{-4} +4 z^2 a^{-6} -z^2 a^{-8} +3 z^2-z a^{-1} -2 z a^{-3} +z a^{-7} - a^{-2} -2 a^{-4} - a^{-6} +1}
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n52, K11n124,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 32. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123456χ
15         11
13        2 -2
11       41 3
9      52  -3
7     54   1
5    55    0
3   45     -1
1  36      3
-1 13       -2
-3 3        3
-51         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials