10 135: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 135 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,4,-5,-10,2,-3,9,-6,-4,5,3,-7,8,-9,6,-8,7/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=135|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,4,-5,-10,2,-3,9,-6,-4,5,3,-7,8,-9,6,-8,7/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[10_34]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_34]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>-2</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>-2</td></tr> |
||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
| Line 70: | Line 38: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{10}+q^9-7 q^8+4 q^7+11 q^6-21 q^5+4 q^4+28 q^3-34 q^2-q+42-38 q^{-1} -7 q^{-2} +44 q^{-3} -30 q^{-4} -13 q^{-5} +35 q^{-6} -16 q^{-7} -14 q^{-8} +19 q^{-9} -4 q^{-10} -8 q^{-11} +6 q^{-12} -2 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-2 q^{20}+2 q^{19}+2 q^{18}+6 q^{17}-12 q^{16}-10 q^{15}+13 q^{14}+28 q^{13}-16 q^{12}-51 q^{11}+12 q^{10}+77 q^9-106 q^7-15 q^6+125 q^5+42 q^4-148 q^3-55 q^2+149 q+82-158 q^{-1} -87 q^{-2} +142 q^{-3} +107 q^{-4} -135 q^{-5} -106 q^{-6} +108 q^{-7} +114 q^{-8} -86 q^{-9} -107 q^{-10} +53 q^{-11} +102 q^{-12} -29 q^{-13} -85 q^{-14} +5 q^{-15} +64 q^{-16} +11 q^{-17} -46 q^{-18} -14 q^{-19} +25 q^{-20} +16 q^{-21} -14 q^{-22} -10 q^{-23} +5 q^{-24} +7 q^{-25} -3 q^{-26} -2 q^{-27} +2 q^{-29} - q^{-30} </math> | |
|||
coloured_jones_4 = <math>q^{34}+q^{33}-3 q^{32}-6 q^{31}+2 q^{30}+5 q^{29}+18 q^{28}+4 q^{27}-37 q^{26}-21 q^{25}-8 q^{24}+77 q^{23}+70 q^{22}-70 q^{21}-97 q^{20}-112 q^{19}+140 q^{18}+241 q^{17}-19 q^{16}-188 q^{15}-343 q^{14}+119 q^{13}+453 q^{12}+152 q^{11}-200 q^{10}-622 q^9-11 q^8+598 q^7+361 q^6-115 q^5-827 q^4-173 q^3+631 q^2+508 q+12-909 q^{-1} -296 q^{-2} +577 q^{-3} +566 q^{-4} +133 q^{-5} -875 q^{-6} -371 q^{-7} +450 q^{-8} +552 q^{-9} +254 q^{-10} -740 q^{-11} -410 q^{-12} +257 q^{-13} +466 q^{-14} +362 q^{-15} -508 q^{-16} -389 q^{-17} +36 q^{-18} +298 q^{-19} +401 q^{-20} -237 q^{-21} -277 q^{-22} -113 q^{-23} +97 q^{-24} +318 q^{-25} -37 q^{-26} -114 q^{-27} -130 q^{-28} -35 q^{-29} +168 q^{-30} +28 q^{-31} -3 q^{-32} -66 q^{-33} -58 q^{-34} +56 q^{-35} +15 q^{-36} +22 q^{-37} -16 q^{-38} -30 q^{-39} +14 q^{-40} +10 q^{-42} - q^{-43} -9 q^{-44} +4 q^{-45} - q^{-46} +2 q^{-47} -2 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 135]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 15, 10, 14], X[12, 5, 13, 6], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 135]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[9, 15, 10, 14], X[12, 5, 13, 6], |
|||
X[6, 13, 7, 14], X[11, 19, 12, 18], X[15, 1, 16, 20], |
X[6, 13, 7, 14], X[11, 19, 12, 18], X[15, 1, 16, 20], |
||
X[19, 17, 20, 16], X[17, 11, 18, 10], X[7, 2, 8, 3]]</nowiki></ |
X[19, 17, 20, 16], X[17, 11, 18, 10], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 135]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 135]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, 4, -5, -10, 2, -3, 9, -6, -4, 5, 3, -7, 8, -9, |
|||
6, -8, 7]</nowiki></ |
6, -8, 7]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 135]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 135]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 135]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -12, 2, 14, 18, -6, 20, 10, 16]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 135]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 2, -1, 2, -3, -2, -2, -2, -3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 135]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_135_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 135]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 135]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 135]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 135]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_135_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 135]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 135]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 9 2 |
|||
13 + -- - - - 9 t + 3 t |
13 + -- - - - 9 t + 3 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 135]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 135]][z]</nowiki></code></td></tr> |
|||
1 + 3 z + 3 z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + 3 z + 3 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 135]], KnotSignature[Knot[10, 135]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 4 6 6 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 34], Knot[10, 135]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 135]], KnotSignature[Knot[10, 135]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{37, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 135]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 4 6 6 2 3 |
|||
7 - q + -- - -- + -- - - - 5 q + 4 q - 2 q |
7 - q + -- - -- + -- - - - 5 q + 4 q - 2 q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 135]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 135]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 135]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 2 -8 -4 3 2 4 10 |
|||
1 - q - --- + q + q + -- + 3 q - q - 2 q |
1 - q - --- + q + q + -- + 3 q - q - 2 q |
||
10 2 |
10 2 |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 135]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 135]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
2 4 2 2 z 2 2 4 2 4 2 4 |
2 4 2 2 z 2 2 4 2 4 2 4 |
||
4 - -- - a + 5 z - ---- + a z - a z + 2 z + a z |
4 - -- - a + 5 z - ---- + a z - a z + 2 z + a z |
||
2 2 |
2 2 |
||
a a</nowiki></ |
a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 135]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 135]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
2 4 3 z 6 z 3 5 2 4 z 2 2 |
2 4 3 z 6 z 3 5 2 4 z 2 2 |
||
4 + -- - a - --- - --- - 4 a z + a z + 2 a z - 6 z - ---- + a z + |
4 + -- - a - --- - --- - 4 a z + a z + 2 a z - 6 z - ---- + a z + |
||
| Line 172: | Line 214: | ||
4 6 2 z 7 3 7 8 2 8 |
4 6 2 z 7 3 7 8 2 8 |
||
2 a z + ---- + 4 a z + 2 a z + z + a z |
2 a z + ---- + 4 a z + 2 a z + z + a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 135]], Vassiliev[3][Knot[10, 135]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 135]], Vassiliev[3][Knot[10, 135]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 135]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 135]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4 1 1 1 3 1 3 3 |
|||
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
| Line 186: | Line 236: | ||
---- + --- + 2 q t + 3 q t + 2 q t + 2 q t + 2 q t |
---- + --- + 2 q t + 3 q t + 2 q t + 2 q t + 2 q t |
||
3 q t |
3 q t |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 135], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 135], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 2 6 8 4 19 14 16 35 13 30 44 |
|||
42 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - |
42 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- - |
||
14 12 11 10 9 8 7 6 5 4 3 |
14 12 11 10 9 8 7 6 5 4 3 |
||
| Line 200: | Line 254: | ||
9 10 |
9 10 |
||
q + q</nowiki></ |
q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
|||
Latest revision as of 17:03, 1 September 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 135's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3849 X9,15,10,14 X12,5,13,6 X6,13,7,14 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X7283 |
| Gauss code | -1, 10, -2, 1, 4, -5, -10, 2, -3, 9, -6, -4, 5, 3, -7, 8, -9, 6, -8, 7 |
| Dowker-Thistlethwaite code | 4 8 -12 2 14 18 -6 20 10 16 |
| Conway Notation | [221,21,2-] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{6, 8}, {7, 9}, {8, 12}, {11, 6}, {1, 10}, {9, 11}, {5, 2}, {4, 1}, {3, 5}, {12, 4}, {2, 7}, {10, 3}] |
[edit Notes on presentations of 10 135]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 135"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X9,15,10,14 X12,5,13,6 X6,13,7,14 X11,19,12,18 X15,1,16,20 X19,17,20,16 X17,11,18,10 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, 4, -5, -10, 2, -3, 9, -6, -4, 5, 3, -7, 8, -9, 6, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 14 18 -6 20 10 16 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[221,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,1,2,-1,2,-3,-2,-2,-2,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{6, 8}, {7, 9}, {8, 12}, {11, 6}, {1, 10}, {9, 11}, {5, 2}, {4, 1}, {3, 5}, {12, 4}, {2, 7}, {10, 3}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 t^2-9 t+13-9 t^{-1} +3 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 37, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^3+4 q^2-5 q+7-6 q^{-1} +6 q^{-2} -4 q^{-3} +2 q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4-a^4+z^4 a^2+z^2 a^2+2 z^4+5 z^2+4-2 z^2 a^{-2} -2 a^{-2} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^8+z^8+2 a^3 z^7+4 a z^7+2 z^7 a^{-1} +2 a^4 z^6+a^2 z^6+z^6 a^{-2} +a^5 z^5-3 a^3 z^5-8 a z^5-4 z^5 a^{-1} -5 a^4 z^4-4 a^2 z^4+2 z^4 a^{-2} +3 z^4-3 a^5 z^3-a^3 z^3+8 a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} +3 a^4 z^2+a^2 z^2-4 z^2 a^{-2} -6 z^2+2 a^5 z+a^3 z-4 a z-6 z a^{-1} -3 z a^{-3} -a^4+2 a^{-2} +4} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}-2 q^{10}+q^8+q^4+3 q^2+1+3 q^{-2} - q^{-4} -2 q^{-10} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-q^{78}+3 q^{76}-4 q^{74}+3 q^{72}-2 q^{70}-3 q^{68}+9 q^{66}-15 q^{64}+17 q^{62}-15 q^{60}+3 q^{58}+9 q^{56}-25 q^{54}+35 q^{52}-32 q^{50}+17 q^{48}+3 q^{46}-25 q^{44}+35 q^{42}-31 q^{40}+14 q^{38}+7 q^{36}-24 q^{34}+26 q^{32}-14 q^{30}-9 q^{28}+30 q^{26}-37 q^{24}+31 q^{22}-10 q^{20}-18 q^{18}+42 q^{16}-50 q^{14}+46 q^{12}-24 q^{10}-q^8+30 q^6-41 q^4+45 q^2-27+8 q^{-2} +18 q^{-4} -27 q^{-6} +25 q^{-8} -6 q^{-10} -12 q^{-12} +30 q^{-14} -29 q^{-16} +14 q^{-18} +7 q^{-20} -29 q^{-22} +39 q^{-24} -37 q^{-26} +19 q^{-28} -20 q^{-32} +26 q^{-34} -26 q^{-36} +16 q^{-38} -5 q^{-40} -4 q^{-42} +5 q^{-44} -9 q^{-46} +6 q^{-48} -2 q^{-50} + q^{-52} + q^{-54} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+q^9-2 q^7+2 q^5+q+2 q^{-1} - q^{-3} +2 q^{-5} -2 q^{-7} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-q^{30}-q^{28}+4 q^{26}-2 q^{24}-6 q^{22}+7 q^{20}+q^{18}-11 q^{16}+5 q^{14}+6 q^{12}-8 q^{10}+q^8+7 q^6-q^4-3 q^2+3+7 q^{-2} -7 q^{-4} -2 q^{-6} +11 q^{-8} -6 q^{-10} -6 q^{-12} +8 q^{-14} -2 q^{-16} -5 q^{-18} +2 q^{-20} + q^{-22} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{63}+q^{61}+q^{59}-q^{57}-3 q^{55}+2 q^{53}+7 q^{51}-q^{49}-12 q^{47}-3 q^{45}+17 q^{43}+13 q^{41}-19 q^{39}-24 q^{37}+15 q^{35}+34 q^{33}-5 q^{31}-45 q^{29}-7 q^{27}+41 q^{25}+19 q^{23}-38 q^{21}-26 q^{19}+29 q^{17}+30 q^{15}-19 q^{13}-26 q^{11}+8 q^9+27 q^7+4 q^5-21 q^3-14 q+18 q^{-1} +28 q^{-3} -12 q^{-5} -36 q^{-7} +4 q^{-9} +46 q^{-11} +4 q^{-13} -44 q^{-15} -17 q^{-17} +38 q^{-19} +22 q^{-21} -27 q^{-23} -26 q^{-25} +15 q^{-27} +19 q^{-29} -3 q^{-31} -14 q^{-33} -2 q^{-35} +8 q^{-37} +2 q^{-39} -2 q^{-43} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}-2 q^{10}+q^8+q^4+3 q^2+1+3 q^{-2} - q^{-4} -2 q^{-10} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}-2 q^{42}+6 q^{40}-12 q^{38}+23 q^{36}-38 q^{34}+58 q^{32}-80 q^{30}+100 q^{28}-116 q^{26}+114 q^{24}-102 q^{22}+64 q^{20}-20 q^{18}-44 q^{16}+104 q^{14}-158 q^{12}+202 q^{10}-220 q^8+228 q^6-199 q^4+170 q^2-108+54 q^{-2} +12 q^{-4} -64 q^{-6} +102 q^{-8} -124 q^{-10} +123 q^{-12} -112 q^{-14} +86 q^{-16} -64 q^{-18} +36 q^{-20} -20 q^{-22} +8 q^{-24} -2 q^{-26} +2 q^{-30} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-q^{38}+3 q^{34}+2 q^{32}-3 q^{30}-3 q^{28}+2 q^{26}-7 q^{22}-5 q^{20}+2 q^{18}+2 q^{16}-4 q^{14}+5 q^{10}+q^8+2 q^6+6 q^4+4 q^2+3+5 q^{-2} +4 q^{-4} -5 q^{-6} -3 q^{-8} +3 q^{-10} -8 q^{-14} -2 q^{-16} +3 q^{-18} - q^{-20} -3 q^{-22} - q^{-24} +3 q^{-26} + q^{-28} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}-q^{32}+q^{30}+2 q^{28}-4 q^{26}+q^{24}+2 q^{22}-9 q^{20}+2 q^{18}+3 q^{16}-9 q^{14}+2 q^{12}+3 q^{10}-3 q^8+q^6+6 q^4+7 q^2+5+3 q^{-2} +9 q^{-4} -3 q^{-6} -8 q^{-8} +4 q^{-10} -6 q^{-12} -8 q^{-14} +5 q^{-16} - q^{-18} -2 q^{-20} +3 q^{-22} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}-q^{17}-2 q^{13}+q^{11}-q^9+q^7+q^5+3 q^3+3 q+2 q^{-1} +3 q^{-3} - q^{-5} -2 q^{-9} -2 q^{-13} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{44}+2 q^{38}+2 q^{36}-2 q^{34}-2 q^{32}+2 q^{30}-q^{28}-8 q^{26}-3 q^{24}+4 q^{22}-5 q^{20}-10 q^{18}+q^{14}-7 q^{12}-2 q^{10}+9 q^8+8 q^6+6 q^4+18 q^2+17+5 q^{-2} +5 q^{-4} +8 q^{-6} -8 q^{-8} -14 q^{-10} -6 q^{-12} -4 q^{-14} -10 q^{-16} -6 q^{-18} +4 q^{-20} +3 q^{-22} - q^{-24} + q^{-26} +3 q^{-28} } |
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{22}-q^{20}-2 q^{16}+q^{14}-q^{12}+q^8+q^6+3 q^4+3 q^2+4+2 q^{-2} +3 q^{-4} - q^{-6} -2 q^{-10} -2 q^{-12} -2 q^{-16} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}+q^{32}-3 q^{30}+4 q^{28}-6 q^{26}+7 q^{24}-8 q^{22}+7 q^{20}-6 q^{18}+3 q^{16}+q^{14}-4 q^{12}+9 q^{10}-11 q^8+15 q^6-14 q^4+15 q^2-11+9 q^{-2} -3 q^{-4} + q^{-6} +4 q^{-8} -6 q^{-10} +8 q^{-12} -8 q^{-14} +7 q^{-16} -7 q^{-18} +4 q^{-20} -3 q^{-22} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-q^{52}-q^{50}+2 q^{48}+3 q^{46}-q^{44}-5 q^{42}-2 q^{40}+5 q^{38}+5 q^{36}-5 q^{34}-9 q^{32}-q^{30}+8 q^{28}+3 q^{26}-8 q^{24}-6 q^{22}+3 q^{20}+6 q^{18}-2 q^{16}-5 q^{14}+q^{12}+7 q^{10}+2 q^8-3 q^6+8 q^2+7- q^{-2} -4 q^{-4} +5 q^{-6} +7 q^{-8} - q^{-10} -9 q^{-12} -3 q^{-14} +6 q^{-16} +4 q^{-18} -7 q^{-20} -9 q^{-22} +6 q^{-26} +2 q^{-28} -4 q^{-30} -3 q^{-32} + q^{-34} +3 q^{-36} } |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{46}-q^{44}+2 q^{42}-2 q^{40}+4 q^{38}-5 q^{36}+4 q^{34}-7 q^{32}+5 q^{30}-8 q^{28}+3 q^{26}-5 q^{24}+2 q^{22}-q^{20}-4 q^{18}+4 q^{16}-6 q^{14}+8 q^{12}-11 q^{10}+12 q^8-7 q^6+17 q^4-4 q^2+15- q^{-2} +11 q^{-4} + q^{-6} - q^{-8} -2 q^{-10} -7 q^{-12} +2 q^{-14} -10 q^{-16} +2 q^{-18} -9 q^{-20} +6 q^{-22} -4 q^{-24} +4 q^{-26} -3 q^{-28} +3 q^{-30} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-q^{78}+3 q^{76}-4 q^{74}+3 q^{72}-2 q^{70}-3 q^{68}+9 q^{66}-15 q^{64}+17 q^{62}-15 q^{60}+3 q^{58}+9 q^{56}-25 q^{54}+35 q^{52}-32 q^{50}+17 q^{48}+3 q^{46}-25 q^{44}+35 q^{42}-31 q^{40}+14 q^{38}+7 q^{36}-24 q^{34}+26 q^{32}-14 q^{30}-9 q^{28}+30 q^{26}-37 q^{24}+31 q^{22}-10 q^{20}-18 q^{18}+42 q^{16}-50 q^{14}+46 q^{12}-24 q^{10}-q^8+30 q^6-41 q^4+45 q^2-27+8 q^{-2} +18 q^{-4} -27 q^{-6} +25 q^{-8} -6 q^{-10} -12 q^{-12} +30 q^{-14} -29 q^{-16} +14 q^{-18} +7 q^{-20} -29 q^{-22} +39 q^{-24} -37 q^{-26} +19 q^{-28} -20 q^{-32} +26 q^{-34} -26 q^{-36} +16 q^{-38} -5 q^{-40} -4 q^{-42} +5 q^{-44} -9 q^{-46} +6 q^{-48} -2 q^{-50} + q^{-52} + q^{-54} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 135"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 t^2-9 t+13-9 t^{-1} +3 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^3+4 q^2-5 q+7-6 q^{-1} +6 q^{-2} -4 q^{-3} +2 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4-a^4+z^4 a^2+z^2 a^2+2 z^4+5 z^2+4-2 z^2 a^{-2} -2 a^{-2} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 z^8+z^8+2 a^3 z^7+4 a z^7+2 z^7 a^{-1} +2 a^4 z^6+a^2 z^6+z^6 a^{-2} +a^5 z^5-3 a^3 z^5-8 a z^5-4 z^5 a^{-1} -5 a^4 z^4-4 a^2 z^4+2 z^4 a^{-2} +3 z^4-3 a^5 z^3-a^3 z^3+8 a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} +3 a^4 z^2+a^2 z^2-4 z^2 a^{-2} -6 z^2+2 a^5 z+a^3 z-4 a z-6 z a^{-1} -3 z a^{-3} -a^4+2 a^{-2} +4} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_34,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 135"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 t^2-9 t+13-9 t^{-1} +3 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^3+4 q^2-5 q+7-6 q^{-1} +6 q^{-2} -4 q^{-3} +2 q^{-4} - q^{-5} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_34,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 135. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}+q^9-7 q^8+4 q^7+11 q^6-21 q^5+4 q^4+28 q^3-34 q^2-q+42-38 q^{-1} -7 q^{-2} +44 q^{-3} -30 q^{-4} -13 q^{-5} +35 q^{-6} -16 q^{-7} -14 q^{-8} +19 q^{-9} -4 q^{-10} -8 q^{-11} +6 q^{-12} -2 q^{-14} + q^{-15} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 q^{20}+2 q^{19}+2 q^{18}+6 q^{17}-12 q^{16}-10 q^{15}+13 q^{14}+28 q^{13}-16 q^{12}-51 q^{11}+12 q^{10}+77 q^9-106 q^7-15 q^6+125 q^5+42 q^4-148 q^3-55 q^2+149 q+82-158 q^{-1} -87 q^{-2} +142 q^{-3} +107 q^{-4} -135 q^{-5} -106 q^{-6} +108 q^{-7} +114 q^{-8} -86 q^{-9} -107 q^{-10} +53 q^{-11} +102 q^{-12} -29 q^{-13} -85 q^{-14} +5 q^{-15} +64 q^{-16} +11 q^{-17} -46 q^{-18} -14 q^{-19} +25 q^{-20} +16 q^{-21} -14 q^{-22} -10 q^{-23} +5 q^{-24} +7 q^{-25} -3 q^{-26} -2 q^{-27} +2 q^{-29} - q^{-30} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}+q^{33}-3 q^{32}-6 q^{31}+2 q^{30}+5 q^{29}+18 q^{28}+4 q^{27}-37 q^{26}-21 q^{25}-8 q^{24}+77 q^{23}+70 q^{22}-70 q^{21}-97 q^{20}-112 q^{19}+140 q^{18}+241 q^{17}-19 q^{16}-188 q^{15}-343 q^{14}+119 q^{13}+453 q^{12}+152 q^{11}-200 q^{10}-622 q^9-11 q^8+598 q^7+361 q^6-115 q^5-827 q^4-173 q^3+631 q^2+508 q+12-909 q^{-1} -296 q^{-2} +577 q^{-3} +566 q^{-4} +133 q^{-5} -875 q^{-6} -371 q^{-7} +450 q^{-8} +552 q^{-9} +254 q^{-10} -740 q^{-11} -410 q^{-12} +257 q^{-13} +466 q^{-14} +362 q^{-15} -508 q^{-16} -389 q^{-17} +36 q^{-18} +298 q^{-19} +401 q^{-20} -237 q^{-21} -277 q^{-22} -113 q^{-23} +97 q^{-24} +318 q^{-25} -37 q^{-26} -114 q^{-27} -130 q^{-28} -35 q^{-29} +168 q^{-30} +28 q^{-31} -3 q^{-32} -66 q^{-33} -58 q^{-34} +56 q^{-35} +15 q^{-36} +22 q^{-37} -16 q^{-38} -30 q^{-39} +14 q^{-40} +10 q^{-42} - q^{-43} -9 q^{-44} +4 q^{-45} - q^{-46} +2 q^{-47} -2 q^{-49} + q^{-50} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




