10 146: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 146 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,-2,7,-6,-3,4,8,-5,6,-9,10,-7,5,-8,2,-10,9/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=146|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,-2,7,-6,-3,4,8,-5,6,-9,10,-7,5,-8,2,-10,9/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[K11n18]], [[K11n62]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n18]], [[K11n62]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 71: | Line 38: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>-2 q^8+3 q^7+3 q^6-11 q^5+8 q^4+12 q^3-25 q^2+8 q+24-33 q^{-1} +4 q^{-2} +30 q^{-3} -29 q^{-4} -2 q^{-5} +28 q^{-6} -19 q^{-7} -9 q^{-8} +20 q^{-9} -7 q^{-10} -9 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>q^{19}-q^{18}-q^{17}-3 q^{16}+4 q^{15}+8 q^{14}-3 q^{13}-17 q^{12}-5 q^{11}+33 q^{10}+15 q^9-42 q^8-38 q^7+53 q^6+59 q^5-52 q^4-86 q^3+53 q^2+99 q-39-116 q^{-1} +33 q^{-2} +118 q^{-3} -19 q^{-4} -117 q^{-5} +7 q^{-6} +110 q^{-7} +7 q^{-8} -99 q^{-9} -22 q^{-10} +83 q^{-11} +36 q^{-12} -64 q^{-13} -44 q^{-14} +40 q^{-15} +50 q^{-16} -20 q^{-17} -45 q^{-18} +2 q^{-19} +35 q^{-20} +8 q^{-21} -22 q^{-22} -13 q^{-23} +13 q^{-24} +9 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>-2 q^8+3 q^7+3 q^6-11 q^5+8 q^4+12 q^3-25 q^2+8 q+24-33 q^{-1} +4 q^{-2} +30 q^{-3} -29 q^{-4} -2 q^{-5} +28 q^{-6} -19 q^{-7} -9 q^{-8} +20 q^{-9} -7 q^{-10} -9 q^{-11} +9 q^{-12} -3 q^{-14} + q^{-15} </math>|J3=<math>q^{19}-q^{18}-q^{17}-3 q^{16}+4 q^{15}+8 q^{14}-3 q^{13}-17 q^{12}-5 q^{11}+33 q^{10}+15 q^9-42 q^8-38 q^7+53 q^6+59 q^5-52 q^4-86 q^3+53 q^2+99 q-39-116 q^{-1} +33 q^{-2} +118 q^{-3} -19 q^{-4} -117 q^{-5} +7 q^{-6} +110 q^{-7} +7 q^{-8} -99 q^{-9} -22 q^{-10} +83 q^{-11} +36 q^{-12} -64 q^{-13} -44 q^{-14} +40 q^{-15} +50 q^{-16} -20 q^{-17} -45 q^{-18} +2 q^{-19} +35 q^{-20} +8 q^{-21} -22 q^{-22} -13 q^{-23} +13 q^{-24} +9 q^{-25} -4 q^{-26} -5 q^{-27} +3 q^{-29} - q^{-30} </math>|J4=<math>-q^{32}+q^{31}+3 q^{30}-2 q^{28}-10 q^{27}-5 q^{26}+16 q^{25}+18 q^{24}+13 q^{23}-36 q^{22}-57 q^{21}+11 q^{20}+64 q^{19}+99 q^{18}-30 q^{17}-169 q^{16}-81 q^{15}+76 q^{14}+262 q^{13}+85 q^{12}-265 q^{11}-257 q^{10}-20 q^9+415 q^8+286 q^7-271 q^6-413 q^5-187 q^4+475 q^3+459 q^2-204 q-472-335 q^{-1} +450 q^{-2} +543 q^{-3} -126 q^{-4} -450 q^{-5} -415 q^{-6} +381 q^{-7} +544 q^{-8} -49 q^{-9} -372 q^{-10} -448 q^{-11} +267 q^{-12} +489 q^{-13} +47 q^{-14} -242 q^{-15} -444 q^{-16} +109 q^{-17} +367 q^{-18} +135 q^{-19} -64 q^{-20} -371 q^{-21} -41 q^{-22} +183 q^{-23} +149 q^{-24} +96 q^{-25} -217 q^{-26} -101 q^{-27} +12 q^{-28} +73 q^{-29} +149 q^{-30} -63 q^{-31} -58 q^{-32} -55 q^{-33} -15 q^{-34} +95 q^{-35} +8 q^{-36} + q^{-37} -36 q^{-38} -36 q^{-39} +31 q^{-40} +8 q^{-41} +14 q^{-42} -6 q^{-43} -16 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math>|J5=<math>-2 q^{46}+5 q^{44}+5 q^{43}-5 q^{41}-22 q^{40}-17 q^{39}+15 q^{38}+45 q^{37}+49 q^{36}+12 q^{35}-76 q^{34}-134 q^{33}-71 q^{32}+90 q^{31}+239 q^{30}+211 q^{29}-37 q^{28}-358 q^{27}-443 q^{26}-104 q^{25}+444 q^{24}+713 q^{23}+383 q^{22}-417 q^{21}-1034 q^{20}-774 q^{19}+299 q^{18}+1271 q^{17}+1238 q^{16}-9 q^{15}-1457 q^{14}-1706 q^{13}-348 q^{12}+1497 q^{11}+2121 q^{10}+774 q^9-1458 q^8-2435 q^7-1150 q^6+1296 q^5+2649 q^4+1503 q^3-1150 q^2-2744 q-1730+942 q^{-1} +2762 q^{-2} +1932 q^{-3} -798 q^{-4} -2730 q^{-5} -2016 q^{-6} +627 q^{-7} +2647 q^{-8} +2093 q^{-9} -474 q^{-10} -2542 q^{-11} -2118 q^{-12} +303 q^{-13} +2370 q^{-14} +2138 q^{-15} -92 q^{-16} -2159 q^{-17} -2122 q^{-18} -146 q^{-19} +1864 q^{-20} +2067 q^{-21} +410 q^{-22} -1501 q^{-23} -1946 q^{-24} -663 q^{-25} +1081 q^{-26} +1737 q^{-27} +859 q^{-28} -633 q^{-29} -1428 q^{-30} -974 q^{-31} +215 q^{-32} +1063 q^{-33} +946 q^{-34} +127 q^{-35} -658 q^{-36} -816 q^{-37} -339 q^{-38} +298 q^{-39} +586 q^{-40} +418 q^{-41} -20 q^{-42} -349 q^{-43} -360 q^{-44} -142 q^{-45} +125 q^{-46} +255 q^{-47} +190 q^{-48} +11 q^{-49} -125 q^{-50} -150 q^{-51} -88 q^{-52} +25 q^{-53} +101 q^{-54} +89 q^{-55} +18 q^{-56} -35 q^{-57} -60 q^{-58} -47 q^{-59} +9 q^{-60} +36 q^{-61} +29 q^{-62} +6 q^{-63} -8 q^{-64} -18 q^{-65} -14 q^{-66} +6 q^{-67} +9 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{68}-q^{67}-q^{66}-2 q^{63}-3 q^{62}+10 q^{61}+8 q^{60}+5 q^{59}+2 q^{58}-11 q^{57}-36 q^{56}-51 q^{55}+2 q^{54}+52 q^{53}+90 q^{52}+114 q^{51}+60 q^{50}-114 q^{49}-288 q^{48}-262 q^{47}-84 q^{46}+205 q^{45}+546 q^{44}+645 q^{43}+206 q^{42}-547 q^{41}-1049 q^{40}-1041 q^{39}-388 q^{38}+915 q^{37}+1991 q^{36}+1786 q^{35}+248 q^{34}-1692 q^{33}-2968 q^{32}-2693 q^{31}-157 q^{30}+3089 q^{29}+4578 q^{28}+3112 q^{27}-593 q^{26}-4539 q^{25}-6351 q^{24}-3522 q^{23}+2249 q^{22}+6962 q^{21}+7300 q^{20}+2819 q^{19}-4116 q^{18}-9482 q^{17}-8029 q^{16}-769 q^{15}+7388 q^{14}+10770 q^{13}+7097 q^{12}-1757 q^{11}-10661 q^{10}-11619 q^9-4382 q^8+6077 q^7+12288 q^6+10342 q^5+1019 q^4-10185 q^3-13327 q^2-7014 q+4337+12253 q^{-1} +11916 q^{-2} +3013 q^{-3} -9143 q^{-4} -13633 q^{-5} -8352 q^{-6} +2987 q^{-7} +11590 q^{-8} +12374 q^{-9} +4174 q^{-10} -8078 q^{-11} -13313 q^{-12} -8999 q^{-13} +1882 q^{-14} +10654 q^{-15} +12370 q^{-16} +5123 q^{-17} -6725 q^{-18} -12568 q^{-19} -9519 q^{-20} +396 q^{-21} +9107 q^{-22} +12003 q^{-23} +6335 q^{-24} -4511 q^{-25} -11000 q^{-26} -9870 q^{-27} -1796 q^{-28} +6409 q^{-29} +10771 q^{-30} +7563 q^{-31} -1310 q^{-32} -8082 q^{-33} -9319 q^{-34} -4130 q^{-35} +2602 q^{-36} +8045 q^{-37} +7763 q^{-38} +1982 q^{-39} -3984 q^{-40} -7074 q^{-41} -5221 q^{-42} -1130 q^{-43} +4071 q^{-44} +6014 q^{-45} +3720 q^{-46} -115 q^{-47} -3501 q^{-48} -4123 q^{-49} -3012 q^{-50} +447 q^{-51} +2891 q^{-52} +3087 q^{-53} +1745 q^{-54} -378 q^{-55} -1682 q^{-56} -2487 q^{-57} -1152 q^{-58} +302 q^{-59} +1223 q^{-60} +1377 q^{-61} +814 q^{-62} +165 q^{-63} -955 q^{-64} -843 q^{-65} -547 q^{-66} -48 q^{-67} +313 q^{-68} +497 q^{-69} +567 q^{-70} -28 q^{-71} -124 q^{-72} -285 q^{-73} -232 q^{-74} -181 q^{-75} +16 q^{-76} +262 q^{-77} +88 q^{-78} +123 q^{-79} - q^{-80} -38 q^{-81} -141 q^{-82} -96 q^{-83} +45 q^{-84} -2 q^{-85} +63 q^{-86} +39 q^{-87} +38 q^{-88} -36 q^{-89} -40 q^{-90} + q^{-91} -20 q^{-92} +9 q^{-93} +9 q^{-94} +23 q^{-95} -6 q^{-96} -9 q^{-97} +4 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>-q^{32}+q^{31}+3 q^{30}-2 q^{28}-10 q^{27}-5 q^{26}+16 q^{25}+18 q^{24}+13 q^{23}-36 q^{22}-57 q^{21}+11 q^{20}+64 q^{19}+99 q^{18}-30 q^{17}-169 q^{16}-81 q^{15}+76 q^{14}+262 q^{13}+85 q^{12}-265 q^{11}-257 q^{10}-20 q^9+415 q^8+286 q^7-271 q^6-413 q^5-187 q^4+475 q^3+459 q^2-204 q-472-335 q^{-1} +450 q^{-2} +543 q^{-3} -126 q^{-4} -450 q^{-5} -415 q^{-6} +381 q^{-7} +544 q^{-8} -49 q^{-9} -372 q^{-10} -448 q^{-11} +267 q^{-12} +489 q^{-13} +47 q^{-14} -242 q^{-15} -444 q^{-16} +109 q^{-17} +367 q^{-18} +135 q^{-19} -64 q^{-20} -371 q^{-21} -41 q^{-22} +183 q^{-23} +149 q^{-24} +96 q^{-25} -217 q^{-26} -101 q^{-27} +12 q^{-28} +73 q^{-29} +149 q^{-30} -63 q^{-31} -58 q^{-32} -55 q^{-33} -15 q^{-34} +95 q^{-35} +8 q^{-36} + q^{-37} -36 q^{-38} -36 q^{-39} +31 q^{-40} +8 q^{-41} +14 q^{-42} -6 q^{-43} -16 q^{-44} +4 q^{-45} +5 q^{-47} -3 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-2 q^{46}+5 q^{44}+5 q^{43}-5 q^{41}-22 q^{40}-17 q^{39}+15 q^{38}+45 q^{37}+49 q^{36}+12 q^{35}-76 q^{34}-134 q^{33}-71 q^{32}+90 q^{31}+239 q^{30}+211 q^{29}-37 q^{28}-358 q^{27}-443 q^{26}-104 q^{25}+444 q^{24}+713 q^{23}+383 q^{22}-417 q^{21}-1034 q^{20}-774 q^{19}+299 q^{18}+1271 q^{17}+1238 q^{16}-9 q^{15}-1457 q^{14}-1706 q^{13}-348 q^{12}+1497 q^{11}+2121 q^{10}+774 q^9-1458 q^8-2435 q^7-1150 q^6+1296 q^5+2649 q^4+1503 q^3-1150 q^2-2744 q-1730+942 q^{-1} +2762 q^{-2} +1932 q^{-3} -798 q^{-4} -2730 q^{-5} -2016 q^{-6} +627 q^{-7} +2647 q^{-8} +2093 q^{-9} -474 q^{-10} -2542 q^{-11} -2118 q^{-12} +303 q^{-13} +2370 q^{-14} +2138 q^{-15} -92 q^{-16} -2159 q^{-17} -2122 q^{-18} -146 q^{-19} +1864 q^{-20} +2067 q^{-21} +410 q^{-22} -1501 q^{-23} -1946 q^{-24} -663 q^{-25} +1081 q^{-26} +1737 q^{-27} +859 q^{-28} -633 q^{-29} -1428 q^{-30} -974 q^{-31} +215 q^{-32} +1063 q^{-33} +946 q^{-34} +127 q^{-35} -658 q^{-36} -816 q^{-37} -339 q^{-38} +298 q^{-39} +586 q^{-40} +418 q^{-41} -20 q^{-42} -349 q^{-43} -360 q^{-44} -142 q^{-45} +125 q^{-46} +255 q^{-47} +190 q^{-48} +11 q^{-49} -125 q^{-50} -150 q^{-51} -88 q^{-52} +25 q^{-53} +101 q^{-54} +89 q^{-55} +18 q^{-56} -35 q^{-57} -60 q^{-58} -47 q^{-59} +9 q^{-60} +36 q^{-61} +29 q^{-62} +6 q^{-63} -8 q^{-64} -18 q^{-65} -14 q^{-66} +6 q^{-67} +9 q^{-68} +3 q^{-69} -5 q^{-72} +3 q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{68}-q^{67}-q^{66}-2 q^{63}-3 q^{62}+10 q^{61}+8 q^{60}+5 q^{59}+2 q^{58}-11 q^{57}-36 q^{56}-51 q^{55}+2 q^{54}+52 q^{53}+90 q^{52}+114 q^{51}+60 q^{50}-114 q^{49}-288 q^{48}-262 q^{47}-84 q^{46}+205 q^{45}+546 q^{44}+645 q^{43}+206 q^{42}-547 q^{41}-1049 q^{40}-1041 q^{39}-388 q^{38}+915 q^{37}+1991 q^{36}+1786 q^{35}+248 q^{34}-1692 q^{33}-2968 q^{32}-2693 q^{31}-157 q^{30}+3089 q^{29}+4578 q^{28}+3112 q^{27}-593 q^{26}-4539 q^{25}-6351 q^{24}-3522 q^{23}+2249 q^{22}+6962 q^{21}+7300 q^{20}+2819 q^{19}-4116 q^{18}-9482 q^{17}-8029 q^{16}-769 q^{15}+7388 q^{14}+10770 q^{13}+7097 q^{12}-1757 q^{11}-10661 q^{10}-11619 q^9-4382 q^8+6077 q^7+12288 q^6+10342 q^5+1019 q^4-10185 q^3-13327 q^2-7014 q+4337+12253 q^{-1} +11916 q^{-2} +3013 q^{-3} -9143 q^{-4} -13633 q^{-5} -8352 q^{-6} +2987 q^{-7} +11590 q^{-8} +12374 q^{-9} +4174 q^{-10} -8078 q^{-11} -13313 q^{-12} -8999 q^{-13} +1882 q^{-14} +10654 q^{-15} +12370 q^{-16} +5123 q^{-17} -6725 q^{-18} -12568 q^{-19} -9519 q^{-20} +396 q^{-21} +9107 q^{-22} +12003 q^{-23} +6335 q^{-24} -4511 q^{-25} -11000 q^{-26} -9870 q^{-27} -1796 q^{-28} +6409 q^{-29} +10771 q^{-30} +7563 q^{-31} -1310 q^{-32} -8082 q^{-33} -9319 q^{-34} -4130 q^{-35} +2602 q^{-36} +8045 q^{-37} +7763 q^{-38} +1982 q^{-39} -3984 q^{-40} -7074 q^{-41} -5221 q^{-42} -1130 q^{-43} +4071 q^{-44} +6014 q^{-45} +3720 q^{-46} -115 q^{-47} -3501 q^{-48} -4123 q^{-49} -3012 q^{-50} +447 q^{-51} +2891 q^{-52} +3087 q^{-53} +1745 q^{-54} -378 q^{-55} -1682 q^{-56} -2487 q^{-57} -1152 q^{-58} +302 q^{-59} +1223 q^{-60} +1377 q^{-61} +814 q^{-62} +165 q^{-63} -955 q^{-64} -843 q^{-65} -547 q^{-66} -48 q^{-67} +313 q^{-68} +497 q^{-69} +567 q^{-70} -28 q^{-71} -124 q^{-72} -285 q^{-73} -232 q^{-74} -181 q^{-75} +16 q^{-76} +262 q^{-77} +88 q^{-78} +123 q^{-79} - q^{-80} -38 q^{-81} -141 q^{-82} -96 q^{-83} +45 q^{-84} -2 q^{-85} +63 q^{-86} +39 q^{-87} +38 q^{-88} -36 q^{-89} -40 q^{-90} + q^{-91} -20 q^{-92} +9 q^{-93} +9 q^{-94} +23 q^{-95} -6 q^{-96} -9 q^{-97} +4 q^{-98} -7 q^{-99} +5 q^{-102} -3 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 146]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[5, 18, 6, 19], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 146]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[5, 18, 6, 19], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
X[11, 17, 12, 16], X[7, 12, 8, 13], X[15, 6, 16, 7], |
X[11, 17, 12, 16], X[7, 12, 8, 13], X[15, 6, 16, 7], |
||
X[17, 11, 18, 10], X[13, 1, 14, 20], X[19, 15, 20, 14]]</nowiki></ |
X[17, 11, 18, 10], X[13, 1, 14, 20], X[19, 15, 20, 14]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 146]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 146]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8, |
|||
2, -10, 9]</nowiki></ |
2, -10, 9]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 146]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 146]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 146]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -18, -12, 2, -16, -20, -6, -10, -14]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 146]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, 2, 1, -3, 2, -1, 2, -3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 146]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_146_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 146]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 146]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 146]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 146]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_146_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 146]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 146]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 2 |
|||
13 + -- - - - 8 t + 2 t |
13 + -- - - - 8 t + 2 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 146]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 146]][z]</nowiki></code></td></tr> |
|||
1 + 2 z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 |
|||
1 + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 146], Knot[11, NonAlternating, 18], |
|||
Knot[11, NonAlternating, 62]}</nowiki></ |
Knot[11, NonAlternating, 62]}</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 146]], KnotSignature[Knot[10, 146]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 146]], KnotSignature[Knot[10, 146]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 146]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{33, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 146]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 3 4 5 6 2 3 |
|||
6 - q + -- - -- + -- - - - 4 q + 3 q - q |
6 - q + -- - -- + -- - - - 4 q + 3 q - q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 146]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 146]}</nowiki></code></td></tr> |
|||
-q + q + q - q + q - q + q + 2 q - q + q + q - q</nowiki></pre></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 146]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 146]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -14 -12 -10 -8 -6 -2 2 4 6 8 10 |
|||
-q + q + q - q + q - q + q + 2 q - q + q + q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 146]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
2 z 2 2 4 2 4 2 4 |
2 z 2 2 4 2 4 2 4 |
||
1 + z - -- + a z - a z + z + a z |
1 + z - -- + a z - a z + z + a z |
||
2 |
2 |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 146]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 146]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 |
|||
z 3 z 3 2 3 z 2 2 4 2 z |
z 3 z 3 2 3 z 2 2 4 2 z |
||
1 - -- - --- - 3 a z - a z - 3 z - ---- + 3 a z + 3 a z + -- + |
1 - -- - --- - 3 a z - a z - 3 z - ---- + 3 a z + 3 a z + -- + |
||
Line 172: | Line 213: | ||
z 7 3 7 8 2 8 |
z 7 3 7 8 2 8 |
||
-- + 4 a z + 3 a z + z + a z |
-- + 4 a z + 3 a z + z + a z |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 146]], Vassiliev[3][Knot[10, 146]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 146]], Vassiliev[3][Knot[10, 146]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 146]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 146]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 2 1 2 2 3 2 |
|||
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 186: | Line 235: | ||
---- + --- + 2 q t + 2 q t + q t + 2 q t + q t |
---- + --- + 2 q t + 2 q t + q t + 2 q t + q t |
||
3 q t |
3 q t |
||
q t</nowiki></ |
q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 146], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 146], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 3 9 9 7 20 9 19 28 2 29 30 |
|||
24 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- + |
24 + q - --- + --- - --- - --- + -- - -- - -- + -- - -- - -- + -- + |
||
14 12 11 10 9 8 7 6 5 4 3 |
14 12 11 10 9 8 7 6 5 4 3 |
||
Line 197: | Line 250: | ||
-- - -- + 8 q - 25 q + 12 q + 8 q - 11 q + 3 q + 3 q - 2 q |
-- - -- + 8 q - 25 q + 12 q + 8 q - 11 q + 3 q + 3 q - 2 q |
||
2 q |
2 q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 146's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X5,18,6,19 X8394 X2,9,3,10 X11,17,12,16 X7,12,8,13 X15,6,16,7 X17,11,18,10 X13,1,14,20 X19,15,20,14 |
Gauss code | 1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8, 2, -10, 9 |
Dowker-Thistlethwaite code | 4 8 -18 -12 2 -16 -20 -6 -10 -14 |
Conway Notation | [22,21,21-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 8}, {3, 9}, {4, 2}, {1, 3}, {5, 7}, {8, 6}, {7, 10}, {9, 4}, {11, 5}, {10, 12}, {2, 11}, {6, 1}] |
[edit Notes on presentations of 10 146]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 146"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X5,18,6,19 X8394 X2,9,3,10 X11,17,12,16 X7,12,8,13 X15,6,16,7 X17,11,18,10 X13,1,14,20 X19,15,20,14 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, -2, 7, -6, -3, 4, 8, -5, 6, -9, 10, -7, 5, -8, 2, -10, 9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -18 -12 2 -16 -20 -6 -10 -14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[22,21,21-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 8}, {3, 9}, {4, 2}, {1, 3}, {5, 7}, {8, 6}, {7, 10}, {9, 4}, {11, 5}, {10, 12}, {2, 11}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 146"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 33, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n18, K11n62,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 146"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n18, K11n62,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|