Structure and Operations: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Manual TOC Sidebar}}

{{Startup Note}}
{{Startup Note}}


<!--$$?Crossings$$-->
<!--$$?Crossings$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 2 |
in = <nowiki>Crossings</nowiki> |
out= <nowiki>Crossings[L] returns the number of crossings of a knot/link L (in its given presentation).</nowiki>}}
<!--END-->
<!--END-->


<!--$$?PositiveCrossings$$-->
<!--$$?PositiveCrossings$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 3 |
in = <nowiki>PositiveCrossings</nowiki> |
out= <nowiki>PositiveCrossings[L] returns the number of positive (right handed) crossings in a knot/link L (in its given presentation).</nowiki>}}
<!--END-->
<!--END-->


<!--$$?NegativeCrossings$$-->
<!--$$?NegativeCrossings$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 4 |
in = <nowiki>NegativeCrossings</nowiki> |
out= <nowiki>NegativeCrossings[L] returns the number of negative (left handed) crossings in a knot/link L (in its given presentation).</nowiki>}}
<!--END-->
<!--END-->


Thus here's one tautology and one easy example:
Thus here's one tautology and one easy example:


<<!--$$Crossings /@ {Knot[0, 1], TorusKnot[11,10]}$$-->
<!--$$Crossings /@ {Knot[0, 1], TorusKnot[11,10]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 5 |
in = <nowiki>Crossings /@ {Knot[0, 1], TorusKnot[11,10]}</nowiki> |
out= <nowiki>{0, 99}</nowiki>}}
<!--END-->
<!--END-->


And another easy example:
And another easy example:


<<!--$$K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]}$$-->
<!--$$K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 6 |
in = <nowiki>K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]}</nowiki> |
out= <nowiki>{2, 4}</nowiki>}}
<!--END-->
<!--END-->


<!--$$?PositiveQ$$-->
<!--$$?PositiveQ$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 7 |
in = <nowiki>PositiveQ</nowiki> |
out= <nowiki>PositiveQ[xing] returns True if xing is a positive (right handed) crossing and False if it is negative (left handed).</nowiki>}}
<!--END-->
<!--END-->


<!--$$?NegativeQ}]$$-->
<!--$$?NegativeQ$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 8 |
in = <nowiki>NegativeQ</nowiki> |
out= <nowiki>NegativeQ[xing] returns True if xing is a negative (left handed) crossing and False if it is positive (right handed).</nowiki>}}
<!--END-->
<!--END-->


Line 29: Line 66:


<!--$$PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]}$$-->
<!--$$PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 9 |
in = <nowiki>PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]}</nowiki> |
out= <nowiki>{False, True, True, True}</nowiki>}}
<!--END-->
<!--END-->


<!--$$?ConnectedSum]$$-->
<!--$$?ConnectedSum$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 10 |
in = <nowiki>ConnectedSum</nowiki> |
out= <nowiki>ConnectedSum[K1, K2] represents the connected sum of the knots K1 and K2 (ConnectedSum may not work with links).</nowiki>}}
<!--END-->
<!--END-->


The connected sum <math>K=4_1\#4_1</math> of the knot [[4_1]] with itself has 8 crossings (unsurprisingly):
The connected sum <math>K=4_1\#4_1</math> of the knot [[4_1]] with itself has 8 crossings (unsurprisingly):


<!--$$?K = ConnectedSum[Knot[4,1], Knot[4,1]]$$-->
<!--$$K = ConnectedSum[Knot[4,1], Knot[4,1]]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 11 |
in = <nowiki>K = ConnectedSum[Knot[4,1], Knot[4,1]]</nowiki> |
out= <nowiki>ConnectedSum[Knot[4, 1], Knot[4, 1]]</nowiki>}}
<!--END-->
<!--END-->


<!--$$Crossings[K]$$-->
<!--$$Crossings[K]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 12 |
in = <nowiki>Crossings[K]</nowiki> |
out= <nowiki>8</nowiki>}}
<!--END-->
<!--END-->


It is also nice to know that, as expected, the Jones polynomial of <math>K</math> is the square of the Jones polynomial of [[4_1]]:
It is also nice to know that, as expected, the Jones polynomial of <math>K</math> is the square of the Jones polynomial of [[4_1]]:



<!--$$Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2]$$-->
<!--$$Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 13 |
in = <nowiki>Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2]</nowiki> |
out= <nowiki>True</nowiki>}}
<!--END-->
<!--END-->

{{Knot Image Pair|4_1|gif|8_9|gif}}


It is less nice to know that the Jones polynomial cannot tell <math>K</math> apart from the knot [[8_9]]:
It is less nice to know that the Jones polynomial cannot tell <math>K</math> apart from the knot [[8_9]]:


<!--$$Jones[K][q] == Jones[Knot[8,9]][q]$$-->
<!--$$Jones[K][q] == Jones[Knot[8,9]][q]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 14 |
in = <nowiki>Jones[K][q] == Jones[Knot[8,9]][q]</nowiki> |
out= <nowiki>True</nowiki>}}
<!--END-->
<!--END-->


Line 56: Line 124:


<!--$${Alexander[K][t], Alexander[Knot[8,9]][t]}$$-->
<!--$${Alexander[K][t], Alexander[Knot[8,9]][t]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 15 |
in = <nowiki>{Alexander[K][t], Alexander[Knot[8,9]][t]}</nowiki> |
out= <nowiki> -2 6 2 -3 3 5 2 3
{11 + t - - - 6 t + t , 7 - t + -- - - - 5 t + 3 t - t }
t 2 t
t</nowiki>}}
<!--END-->
<!--END-->

Latest revision as of 17:20, 21 February 2013


(For In[1] see Setup)

In[2]:= ?Crossings
Crossings[L] returns the number of crossings of a knot/link L (in its given presentation).
In[3]:= ?PositiveCrossings
PositiveCrossings[L] returns the number of positive (right handed) crossings in a knot/link L (in its given presentation).
In[4]:= ?NegativeCrossings
NegativeCrossings[L] returns the number of negative (left handed) crossings in a knot/link L (in its given presentation).

Thus here's one tautology and one easy example:

In[5]:= Crossings /@ {Knot[0, 1], TorusKnot[11,10]}
Out[5]= {0, 99}

And another easy example:

In[6]:= K=Knot[6, 2]; {PositiveCrossings[K], NegativeCrossings[K]}
Out[6]= {2, 4}
In[7]:= ?PositiveQ
PositiveQ[xing] returns True if xing is a positive (right handed) crossing and False if it is negative (left handed).
In[8]:= ?NegativeQ
NegativeQ[xing] returns True if xing is a negative (left handed) crossing and False if it is positive (right handed).

For example,

In[9]:= PositiveQ /@ {X[1,3,2,4], X[1,4,2,3], Xp[1,3,2,4], Xp[1,4,2,3]}
Out[9]= {False, True, True, True}
In[10]:= ?ConnectedSum
ConnectedSum[K1, K2] represents the connected sum of the knots K1 and K2 (ConnectedSum may not work with links).

The connected sum of the knot 4_1 with itself has 8 crossings (unsurprisingly):

In[11]:= K = ConnectedSum[Knot[4,1], Knot[4,1]]
Out[11]= ConnectedSum[Knot[4, 1], Knot[4, 1]]
In[12]:= Crossings[K]
Out[12]= 8

It is also nice to know that, as expected, the Jones polynomial of is the square of the Jones polynomial of 4_1:

In[13]:= Jones[K][q] == Expand[Jones[Knot[4,1]][q]^2]
Out[13]= True
4 1.gif
4_1
8 9.gif
8_9

It is less nice to know that the Jones polynomial cannot tell apart from the knot 8_9:

In[14]:= Jones[K][q] == Jones[Knot[8,9]][q]
Out[14]= True

But isn't equivalent to 8_9; indeed, their Alexander polynomials are different:

In[15]:= {Alexander[K][t], Alexander[Knot[8,9]][t]}
Out[15]= -2 6 2 -3 3 5 2 3 {11 + t - - - 6 t + t , 7 - t + -- - - - 5 t + 3 t - t } t 2 t t