7 6: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Knot Navigation Links|name=7_6}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
{{Knot Site Links|n=7|k=6}} |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
{{Knot Presentations|name=7_6}} |
|||
<!-- --> |
|||
{{3D Invariants|name=7_6}} |
|||
{{Rolfsen Knot Page| |
|||
{{Polynomial Invariants|name=7_6}} |
|||
n = 7 | |
|||
{{Vassiliev Invariants|name=7_6}} |
|||
k = 6 | |
|||
{{Khovanov Invariants|name=7_6}} |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,7,-2,1,-3,6,-7,2,-4,5,-6,3,-5,4/goTop.html | |
|||
{{Quantum Invariants|name=7_6}} |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 7 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[10_133]], | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=8.33333%>-5</td ><td width=8.33333%>-4</td ><td width=8.33333%>-3</td ><td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=16.6667%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^4-2 q^3-q^2+6 q-4-5 q^{-1} +12 q^{-2} -5 q^{-3} -10 q^{-4} +16 q^{-5} -4 q^{-6} -13 q^{-7} +17 q^{-8} -3 q^{-9} -12 q^{-10} +12 q^{-11} - q^{-12} -7 q^{-13} +5 q^{-14} -2 q^{-16} + q^{-17} </math> | |
|||
coloured_jones_3 = <math>q^9-2 q^8-q^7+2 q^6+5 q^5-3 q^4-9 q^3+2 q^2+14 q-18 q^{-1} -5 q^{-2} +24 q^{-3} +9 q^{-4} -26 q^{-5} -15 q^{-6} +30 q^{-7} +19 q^{-8} -29 q^{-9} -26 q^{-10} +33 q^{-11} +26 q^{-12} -30 q^{-13} -31 q^{-14} +31 q^{-15} +28 q^{-16} -25 q^{-17} -29 q^{-18} +22 q^{-19} +25 q^{-20} -16 q^{-21} -20 q^{-22} +10 q^{-23} +15 q^{-24} -6 q^{-25} -10 q^{-26} +3 q^{-27} +6 q^{-28} -2 q^{-29} -2 q^{-30} +2 q^{-32} - q^{-33} </math> | |
|||
coloured_jones_4 = <math>q^{16}-2 q^{15}-q^{14}+2 q^{13}+q^{12}+6 q^{11}-7 q^{10}-7 q^9+2 q^7+24 q^6-8 q^5-17 q^4-12 q^3-6 q^2+49 q+3-18 q^{-1} -32 q^{-2} -31 q^{-3} +71 q^{-4} +23 q^{-5} -6 q^{-6} -50 q^{-7} -64 q^{-8} +81 q^{-9} +43 q^{-10} +16 q^{-11} -62 q^{-12} -96 q^{-13} +83 q^{-14} +58 q^{-15} +36 q^{-16} -69 q^{-17} -118 q^{-18} +80 q^{-19} +66 q^{-20} +50 q^{-21} -69 q^{-22} -127 q^{-23} +72 q^{-24} +64 q^{-25} +57 q^{-26} -57 q^{-27} -119 q^{-28} +52 q^{-29} +51 q^{-30} +57 q^{-31} -36 q^{-32} -93 q^{-33} +29 q^{-34} +28 q^{-35} +44 q^{-36} -13 q^{-37} -56 q^{-38} +12 q^{-39} +7 q^{-40} +25 q^{-41} - q^{-42} -25 q^{-43} +6 q^{-44} - q^{-45} +9 q^{-46} + q^{-47} -8 q^{-48} +3 q^{-49} - q^{-50} +2 q^{-51} -2 q^{-53} + q^{-54} </math> | |
|||
coloured_jones_5 = <math>q^{25}-2 q^{24}-q^{23}+2 q^{22}+q^{21}+2 q^{20}+2 q^{19}-5 q^{18}-9 q^{17}+5 q^{15}+11 q^{14}+13 q^{13}-4 q^{12}-22 q^{11}-22 q^{10}-2 q^9+23 q^8+39 q^7+19 q^6-25 q^5-53 q^4-41 q^3+13 q^2+68 q+66+7 q^{-1} -71 q^{-2} -97 q^{-3} -37 q^{-4} +74 q^{-5} +121 q^{-6} +68 q^{-7} -56 q^{-8} -147 q^{-9} -107 q^{-10} +44 q^{-11} +163 q^{-12} +139 q^{-13} -17 q^{-14} -176 q^{-15} -179 q^{-16} +3 q^{-17} +183 q^{-18} +201 q^{-19} +29 q^{-20} -193 q^{-21} -233 q^{-22} -35 q^{-23} +192 q^{-24} +244 q^{-25} +64 q^{-26} -198 q^{-27} -269 q^{-28} -62 q^{-29} +192 q^{-30} +266 q^{-31} +89 q^{-32} -190 q^{-33} -280 q^{-34} -85 q^{-35} +174 q^{-36} +265 q^{-37} +108 q^{-38} -157 q^{-39} -262 q^{-40} -107 q^{-41} +132 q^{-42} +234 q^{-43} +118 q^{-44} -103 q^{-45} -206 q^{-46} -115 q^{-47} +71 q^{-48} +170 q^{-49} +105 q^{-50} -41 q^{-51} -129 q^{-52} -91 q^{-53} +17 q^{-54} +90 q^{-55} +73 q^{-56} -3 q^{-57} -56 q^{-58} -53 q^{-59} -4 q^{-60} +32 q^{-61} +32 q^{-62} +8 q^{-63} -16 q^{-64} -21 q^{-65} -4 q^{-66} +10 q^{-67} +6 q^{-68} +4 q^{-69} - q^{-70} -8 q^{-71} +4 q^{-73} - q^{-74} + q^{-76} -2 q^{-77} +2 q^{-79} - q^{-80} </math> | |
|||
coloured_jones_6 = <math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+q^{32}+2 q^{31}-2 q^{30}+4 q^{29}-7 q^{28}-9 q^{27}+3 q^{26}+4 q^{25}+11 q^{24}+3 q^{23}+18 q^{22}-16 q^{21}-29 q^{20}-14 q^{19}-5 q^{18}+20 q^{17}+18 q^{16}+69 q^{15}-3 q^{14}-46 q^{13}-53 q^{12}-52 q^{11}-9 q^{10}+16 q^9+150 q^8+63 q^7-7 q^6-75 q^5-122 q^4-109 q^3-60 q^2+209 q+158+113 q^{-1} -19 q^{-2} -155 q^{-3} -247 q^{-4} -225 q^{-5} +183 q^{-6} +220 q^{-7} +275 q^{-8} +124 q^{-9} -100 q^{-10} -361 q^{-11} -429 q^{-12} +71 q^{-13} +207 q^{-14} +419 q^{-15} +304 q^{-16} +28 q^{-17} -416 q^{-18} -614 q^{-19} -77 q^{-20} +136 q^{-21} +516 q^{-22} +470 q^{-23} +176 q^{-24} -429 q^{-25} -750 q^{-26} -211 q^{-27} +55 q^{-28} +574 q^{-29} +592 q^{-30} +301 q^{-31} -428 q^{-32} -840 q^{-33} -308 q^{-34} -9 q^{-35} +609 q^{-36} +669 q^{-37} +387 q^{-38} -420 q^{-39} -889 q^{-40} -371 q^{-41} -56 q^{-42} +614 q^{-43} +709 q^{-44} +448 q^{-45} -390 q^{-46} -889 q^{-47} -416 q^{-48} -109 q^{-49} +572 q^{-50} +707 q^{-51} +496 q^{-52} -314 q^{-53} -820 q^{-54} -439 q^{-55} -177 q^{-56} +464 q^{-57} +641 q^{-58} +517 q^{-59} -190 q^{-60} -660 q^{-61} -409 q^{-62} -240 q^{-63} +295 q^{-64} +493 q^{-65} +476 q^{-66} -53 q^{-67} -434 q^{-68} -304 q^{-69} -251 q^{-70} +116 q^{-71} +294 q^{-72} +359 q^{-73} +35 q^{-74} -214 q^{-75} -161 q^{-76} -192 q^{-77} +3 q^{-78} +119 q^{-79} +210 q^{-80} +47 q^{-81} -75 q^{-82} -45 q^{-83} -104 q^{-84} -26 q^{-85} +25 q^{-86} +92 q^{-87} +23 q^{-88} -23 q^{-89} +4 q^{-90} -38 q^{-91} -16 q^{-92} - q^{-93} +32 q^{-94} +4 q^{-95} -9 q^{-96} +9 q^{-97} -10 q^{-98} -4 q^{-99} -3 q^{-100} +10 q^{-101} - q^{-102} -5 q^{-103} +5 q^{-104} -2 q^{-105} - q^{-107} +2 q^{-108} -2 q^{-110} + q^{-111} </math> | |
|||
coloured_jones_7 = <math>q^{49}-2 q^{48}-q^{47}+2 q^{46}+q^{45}+2 q^{44}-2 q^{43}+2 q^{41}-7 q^{40}-6 q^{39}+2 q^{38}+4 q^{37}+13 q^{36}+4 q^{35}+q^{34}+9 q^{33}-20 q^{32}-25 q^{31}-17 q^{30}-7 q^{29}+30 q^{28}+29 q^{27}+29 q^{26}+44 q^{25}-15 q^{24}-51 q^{23}-67 q^{22}-82 q^{21}+3 q^{20}+41 q^{19}+80 q^{18}+146 q^{17}+66 q^{16}-10 q^{15}-103 q^{14}-210 q^{13}-137 q^{12}-61 q^{11}+61 q^{10}+264 q^9+243 q^8+177 q^7+14 q^6-281 q^5-334 q^4-328 q^3-151 q^2+244 q+402+483 q^{-1} +344 q^{-2} -133 q^{-3} -423 q^{-4} -643 q^{-5} -568 q^{-6} -19 q^{-7} +374 q^{-8} +753 q^{-9} +804 q^{-10} +251 q^{-11} -270 q^{-12} -838 q^{-13} -1033 q^{-14} -485 q^{-15} +115 q^{-16} +846 q^{-17} +1231 q^{-18} +752 q^{-19} +88 q^{-20} -830 q^{-21} -1410 q^{-22} -986 q^{-23} -293 q^{-24} +764 q^{-25} +1525 q^{-26} +1227 q^{-27} +515 q^{-28} -695 q^{-29} -1640 q^{-30} -1409 q^{-31} -698 q^{-32} +593 q^{-33} +1702 q^{-34} +1594 q^{-35} +882 q^{-36} -533 q^{-37} -1773 q^{-38} -1707 q^{-39} -1014 q^{-40} +442 q^{-41} +1802 q^{-42} +1843 q^{-43} +1142 q^{-44} -411 q^{-45} -1852 q^{-46} -1903 q^{-47} -1215 q^{-48} +335 q^{-49} +1857 q^{-50} +1997 q^{-51} +1310 q^{-52} -320 q^{-53} -1889 q^{-54} -2017 q^{-55} -1348 q^{-56} +242 q^{-57} +1855 q^{-58} +2076 q^{-59} +1433 q^{-60} -210 q^{-61} -1843 q^{-62} -2062 q^{-63} -1459 q^{-64} +103 q^{-65} +1748 q^{-66} +2069 q^{-67} +1529 q^{-68} -21 q^{-69} -1657 q^{-70} -1998 q^{-71} -1541 q^{-72} -114 q^{-73} +1477 q^{-74} +1907 q^{-75} +1561 q^{-76} +239 q^{-77} -1278 q^{-78} -1748 q^{-79} -1517 q^{-80} -374 q^{-81} +1031 q^{-82} +1536 q^{-83} +1432 q^{-84} +486 q^{-85} -768 q^{-86} -1277 q^{-87} -1301 q^{-88} -551 q^{-89} +514 q^{-90} +994 q^{-91} +1110 q^{-92} +571 q^{-93} -285 q^{-94} -715 q^{-95} -892 q^{-96} -545 q^{-97} +117 q^{-98} +465 q^{-99} +671 q^{-100} +465 q^{-101} -9 q^{-102} -259 q^{-103} -464 q^{-104} -366 q^{-105} -50 q^{-106} +120 q^{-107} +296 q^{-108} +265 q^{-109} +61 q^{-110} -41 q^{-111} -170 q^{-112} -167 q^{-113} -48 q^{-114} -13 q^{-115} +89 q^{-116} +110 q^{-117} +34 q^{-118} +12 q^{-119} -49 q^{-120} -48 q^{-121} -11 q^{-122} -26 q^{-123} +14 q^{-124} +37 q^{-125} +10 q^{-126} +8 q^{-127} -15 q^{-128} -9 q^{-129} +7 q^{-130} -14 q^{-131} - q^{-132} +10 q^{-133} +2 q^{-134} +3 q^{-135} -6 q^{-136} - q^{-137} +6 q^{-138} -4 q^{-139} -2 q^{-140} +2 q^{-141} + q^{-143} -2 q^{-144} +2 q^{-146} - q^{-147} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[7, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 12, 6, 13], X[9, 1, 10, 14], |
|||
X[13, 11, 14, 10], X[11, 6, 12, 7], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[7, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[7, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, 14, 6, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[7, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 7}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[7, 6]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[7, 6]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:7_6_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[7, 6]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, 4, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[7, 6]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 5 2 |
|||
-7 - t + - + 5 t - t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[7, 6]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 6], Knot[10, 133]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[7, 6]], KnotSignature[Knot[7, 6]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{19, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[7, 6]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 2 3 4 3 3 |
|||
-2 - q + -- - -- + -- - -- + - + q |
|||
5 4 3 2 q |
|||
q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 6]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[7, 6]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 -18 -16 -12 -10 -6 -4 -2 4 |
|||
-q - q + q + q + q + q - q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[7, 6]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 2 4 2 2 4 |
|||
1 - a + 2 a - a + z - 2 a z + 2 a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[7, 6]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 7 2 2 2 4 2 |
|||
1 + a + 2 a + a + a z + 2 a z - a z - 2 z - 4 a z - 4 a z - |
|||
6 2 3 3 3 5 3 7 3 4 2 4 4 4 |
|||
2 a z - 4 a z - 6 a z - a z + a z + z + a z + 2 a z + |
|||
6 4 5 3 5 5 5 2 6 4 6 |
|||
2 a z + 2 a z + 4 a z + 2 a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[7, 6]], Vassiliev[3][Knot[7, 6]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[7, 6]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 2 1 1 1 2 1 2 2 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
|||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
|||
q q t q t q t q t q t q t q t |
|||
1 2 t 3 2 |
|||
---- + ---- + - + q t + q t |
|||
5 3 q |
|||
q t q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[7, 6], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -17 2 5 7 -12 12 12 3 17 13 4 |
|||
-4 + q - --- + --- - --- - q + --- - --- - -- + -- - -- - -- + |
|||
16 14 13 11 10 9 8 7 6 |
|||
q q q q q q q q q |
|||
16 10 5 12 5 2 3 4 |
|||
-- - -- - -- + -- - - + 6 q - q - 2 q + q |
|||
5 4 3 2 q |
|||
q q q q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:01, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 7 6's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X5,12,6,13 X9,1,10,14 X13,11,14,10 X11,6,12,7 X7283 |
Gauss code | -1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4 |
Dowker-Thistlethwaite code | 4 8 12 2 14 6 10 |
Conway Notation | [2212] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 7, width is 4, Braid index is 4 |
[{10, 2}, {1, 8}, {6, 9}, {8, 10}, {7, 3}, {2, 6}, {4, 7}, {3, 5}, {9, 4}, {5, 1}] |
[edit Notes on presentations of 7 6]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["7 6"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,12,6,13 X9,1,10,14 X13,11,14,10 X11,6,12,7 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 7, -2, 1, -3, 6, -7, 2, -4, 5, -6, 3, -5, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 14 6 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[2212] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 7, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{10, 2}, {1, 8}, {6, 9}, {8, 10}, {7, 3}, {2, 6}, {4, 7}, {3, 5}, {9, 4}, {5, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["7 6"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_133,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["7 6"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_133,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 7 6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|