9 43: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 9 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 43 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-9,5,-3,4,-2,-7,8,9,-5,-6,7,-8,6/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
{{Rolfsen Knot Page Header|n=9|k=43|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-9,5,-3,4,-2,-7,8,9,-5,-6,7,-8,6/goTop.html}} |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
<br style="clear:both" /> |
|||
braid_crossings = 9 | |
|||
braid_width = 4 | |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
{{Knot Presentations}} |
|||
same_jones = [[K11n12]], | |
|||
{{3D Invariants}} |
|||
khovanov_table = <table border=1> |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
<td width=16.6667%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=8.33333%>-2</td ><td width=8.33333%>-1</td ><td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=8.33333%>3</td ><td width=8.33333%>4</td ><td width=8.33333%>5</td ><td width=16.6667%>χ</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 38: | Line 37: | ||
<tr align=center><td>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{17}-q^{16}-q^{15}+2 q^{14}-q^{13}-2 q^{12}+2 q^{11}+q^{10}-3 q^9+q^8+3 q^7-3 q^6+4 q^4-3 q^3-q^2+3 q-1- q^{-1} + q^{-2} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_3 = <math>q^{37}-2 q^{36}-q^{35}+2 q^{34}+4 q^{33}-3 q^{32}-7 q^{31}+4 q^{30}+9 q^{29}-3 q^{28}-11 q^{27}+3 q^{26}+11 q^{25}-2 q^{24}-11 q^{23}+2 q^{22}+9 q^{21}-2 q^{20}-8 q^{19}+2 q^{18}+6 q^{17}-q^{16}-5 q^{15}+q^{14}+3 q^{13}-2 q^{11}+q^{10}-q^9+q^7+3 q^6-3 q^5-2 q^4+2 q^3+4 q^2-2 q-3+3 q^{-2} - q^{-4} - q^{-5} + q^{-6} </math> | |
|||
coloured_jones_4 = <math>-q^{60}+2 q^{59}+q^{58}-3 q^{57}-q^{56}-2 q^{55}+9 q^{54}+3 q^{53}-9 q^{52}-7 q^{51}-6 q^{50}+21 q^{49}+11 q^{48}-13 q^{47}-16 q^{46}-13 q^{45}+27 q^{44}+20 q^{43}-11 q^{42}-20 q^{41}-19 q^{40}+26 q^{39}+23 q^{38}-9 q^{37}-18 q^{36}-19 q^{35}+21 q^{34}+22 q^{33}-7 q^{32}-15 q^{31}-18 q^{30}+16 q^{29}+21 q^{28}-5 q^{27}-11 q^{26}-18 q^{25}+9 q^{24}+20 q^{23}-q^{22}-6 q^{21}-17 q^{20}+q^{19}+17 q^{18}+2 q^{17}-12 q^{15}-5 q^{14}+11 q^{13}+q^{12}+3 q^{11}-4 q^{10}-5 q^9+6 q^8-4 q^7+2 q^6+q^5-q^4+6 q^3-6 q^2-2 q+ q^{-1} +7 q^{-2} -3 q^{-3} -2 q^{-4} -2 q^{-5} - q^{-6} +4 q^{-7} - q^{-10} - q^{-11} + q^{-12} </math> | |
|||
<table> |
|||
coloured_jones_5 = <math>q^{85}-3 q^{83}-2 q^{82}+q^{81}+6 q^{80}+7 q^{79}-14 q^{77}-15 q^{76}+20 q^{74}+25 q^{73}+6 q^{72}-24 q^{71}-38 q^{70}-13 q^{69}+27 q^{68}+44 q^{67}+21 q^{66}-23 q^{65}-50 q^{64}-29 q^{63}+20 q^{62}+51 q^{61}+32 q^{60}-15 q^{59}-48 q^{58}-34 q^{57}+12 q^{56}+46 q^{55}+32 q^{54}-11 q^{53}-41 q^{52}-30 q^{51}+9 q^{50}+39 q^{49}+27 q^{48}-8 q^{47}-33 q^{46}-27 q^{45}+5 q^{44}+30 q^{43}+26 q^{42}-q^{41}-25 q^{40}-27 q^{39}-4 q^{38}+20 q^{37}+26 q^{36}+10 q^{35}-14 q^{34}-26 q^{33}-14 q^{32}+6 q^{31}+23 q^{30}+19 q^{29}+q^{28}-19 q^{27}-21 q^{26}-8 q^{25}+12 q^{24}+22 q^{23}+14 q^{22}-6 q^{21}-18 q^{20}-18 q^{19}-2 q^{18}+14 q^{17}+18 q^{16}+6 q^{15}-6 q^{14}-14 q^{13}-10 q^{12}+2 q^{11}+10 q^{10}+7 q^9+2 q^8-3 q^7-5 q^6-2 q^5+q^4+2+3 q^{-1} +2 q^{-2} -3 q^{-3} -4 q^{-4} -3 q^{-5} +4 q^{-7} +5 q^{-8} -2 q^{-10} -2 q^{-11} -3 q^{-12} +3 q^{-14} + q^{-15} - q^{-18} - q^{-19} + q^{-20} </math> | |
|||
<tr valign=top> |
|||
coloured_jones_6 = <math>q^{122}-2 q^{121}-q^{120}+2 q^{119}+q^{118}+2 q^{117}-q^{116}+2 q^{115}-9 q^{114}-8 q^{113}+6 q^{112}+9 q^{111}+14 q^{110}+6 q^{109}+q^{108}-35 q^{107}-34 q^{106}+q^{105}+25 q^{104}+49 q^{103}+38 q^{102}+16 q^{101}-70 q^{100}-85 q^{99}-31 q^{98}+24 q^{97}+86 q^{96}+87 q^{95}+55 q^{94}-81 q^{93}-124 q^{92}-74 q^{91}-3 q^{90}+92 q^{89}+117 q^{88}+96 q^{87}-64 q^{86}-128 q^{85}-95 q^{84}-28 q^{83}+77 q^{82}+115 q^{81}+110 q^{80}-50 q^{79}-116 q^{78}-91 q^{77}-32 q^{76}+68 q^{75}+103 q^{74}+103 q^{73}-49 q^{72}-106 q^{71}-80 q^{70}-26 q^{69}+65 q^{68}+93 q^{67}+93 q^{66}-48 q^{65}-95 q^{64}-71 q^{63}-27 q^{62}+55 q^{61}+81 q^{60}+89 q^{59}-36 q^{58}-76 q^{57}-64 q^{56}-36 q^{55}+35 q^{54}+64 q^{53}+86 q^{52}-15 q^{51}-48 q^{50}-54 q^{49}-47 q^{48}+8 q^{47}+40 q^{46}+79 q^{45}+8 q^{44}-15 q^{43}-36 q^{42}-51 q^{41}-18 q^{40}+8 q^{39}+59 q^{38}+21 q^{37}+17 q^{36}-7 q^{35}-38 q^{34}-30 q^{33}-23 q^{32}+24 q^{31}+14 q^{30}+32 q^{29}+22 q^{28}-8 q^{27}-17 q^{26}-35 q^{25}-10 q^{24}-11 q^{23}+20 q^{22}+30 q^{21}+17 q^{20}+12 q^{19}-20 q^{18}-19 q^{17}-27 q^{16}-6 q^{15}+12 q^{14}+16 q^{13}+28 q^{12}+2 q^{11}-4 q^{10}-17 q^9-15 q^8-6 q^7-q^6+18 q^5+4 q^4+6 q^3-4 q-4-6 q^{-1} +7 q^{-2} -7 q^{-3} + q^{-5} +2 q^{-6} +3 q^{-7} + q^{-8} +9 q^{-9} -7 q^{-10} -4 q^{-11} -4 q^{-12} -2 q^{-13} +2 q^{-15} +9 q^{-16} - q^{-17} -2 q^{-19} -2 q^{-20} -3 q^{-21} - q^{-22} +4 q^{-23} + q^{-25} - q^{-28} - q^{-29} + q^{-30} </math> | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
coloured_jones_7 = <math>-q^{161}+2 q^{160}+q^{159}-2 q^{158}-2 q^{157}-2 q^{156}+4 q^{155}+2 q^{154}+q^{153}+5 q^{152}-q^{151}-11 q^{150}-13 q^{149}-9 q^{148}+13 q^{147}+24 q^{146}+21 q^{145}+22 q^{144}-12 q^{143}-45 q^{142}-57 q^{141}-46 q^{140}+16 q^{139}+74 q^{138}+96 q^{137}+85 q^{136}-3 q^{135}-97 q^{134}-142 q^{133}-145 q^{132}-30 q^{131}+111 q^{130}+194 q^{129}+206 q^{128}+68 q^{127}-101 q^{126}-220 q^{125}-264 q^{124}-129 q^{123}+77 q^{122}+236 q^{121}+307 q^{120}+172 q^{119}-43 q^{118}-221 q^{117}-325 q^{116}-212 q^{115}+6 q^{114}+204 q^{113}+329 q^{112}+228 q^{111}+18 q^{110}-181 q^{109}-318 q^{108}-232 q^{107}-31 q^{106}+164 q^{105}+305 q^{104}+226 q^{103}+32 q^{102}-156 q^{101}-294 q^{100}-215 q^{99}-27 q^{98}+154 q^{97}+283 q^{96}+206 q^{95}+22 q^{94}-153 q^{93}-277 q^{92}-198 q^{91}-17 q^{90}+150 q^{89}+264 q^{88}+194 q^{87}+20 q^{86}-141 q^{85}-255 q^{84}-189 q^{83}-25 q^{82}+127 q^{81}+238 q^{80}+187 q^{79}+37 q^{78}-109 q^{77}-220 q^{76}-184 q^{75}-52 q^{74}+86 q^{73}+199 q^{72}+182 q^{71}+68 q^{70}-57 q^{69}-174 q^{68}-179 q^{67}-87 q^{66}+29 q^{65}+146 q^{64}+168 q^{63}+105 q^{62}+5 q^{61}-112 q^{60}-158 q^{59}-117 q^{58}-34 q^{57}+71 q^{56}+134 q^{55}+125 q^{54}+67 q^{53}-33 q^{52}-108 q^{51}-118 q^{50}-85 q^{49}-10 q^{48}+66 q^{47}+105 q^{46}+99 q^{45}+43 q^{44}-33 q^{43}-74 q^{42}-88 q^{41}-67 q^{40}-12 q^{39}+40 q^{38}+75 q^{37}+73 q^{36}+32 q^{35}-4 q^{34}-36 q^{33}-62 q^{32}-52 q^{31}-25 q^{30}+7 q^{29}+40 q^{28}+39 q^{27}+40 q^{26}+27 q^{25}-9 q^{24}-26 q^{23}-35 q^{22}-39 q^{21}-17 q^{20}-3 q^{19}+21 q^{18}+41 q^{17}+27 q^{16}+21 q^{15}+6 q^{14}-25 q^{13}-29 q^{12}-33 q^{11}-19 q^{10}+9 q^9+13 q^8+25 q^7+31 q^6+8 q^5-q^4-18 q^3-23 q^2-8 q-10+15 q^{-2} +8 q^{-3} +10 q^{-4} +3 q^{-5} -6 q^{-6} +3 q^{-7} -4 q^{-8} -5 q^{-9} + q^{-10} -6 q^{-11} - q^{-12} -4 q^{-14} +6 q^{-15} +5 q^{-16} +4 q^{-17} +7 q^{-18} -4 q^{-19} -4 q^{-20} -3 q^{-21} -7 q^{-22} -2 q^{-23} +3 q^{-25} +8 q^{-26} + q^{-27} + q^{-29} -3 q^{-30} -2 q^{-31} -3 q^{-32} - q^{-33} +3 q^{-34} + q^{-35} + q^{-37} - q^{-40} - q^{-41} + q^{-42} </math> | |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
computer_talk = |
|||
</tr> |
|||
<table> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 43]]</nowiki></pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 43]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], |
|||
X[14, 8, 15, 7], X[15, 1, 16, 18], X[11, 17, 12, 16], |
X[14, 8, 15, 7], X[15, 1, 16, 18], X[11, 17, 12, 16], |
||
X[17, 13, 18, 12], X[6, 14, 7, 13]]</nowiki></ |
X[17, 13, 18, 12], X[6, 14, 7, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 43]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, -7, 8, 9, -5, -6, 7, -8, 6]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 43]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 43]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, -7, 8, 9, -5, -6, 7, -8, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 43]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 14, 2, -16, 6, -18, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 43]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 2, 1, 1, -3, 2, -3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 43]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 43]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_43_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 43]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, {4, 5}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 43]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 2 2 3 |
|||
1 - t + -- - - - 2 t + 3 t - t |
1 - t + -- - - - 2 t + 3 t - t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 43]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + z - 3 z - z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 43]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 43]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + z - 3 z - z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 43]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 |
|||
<table><tr align=left> |
|||
1 - q + 2 q - 2 q + 2 q - 2 q + 2 q - q</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 43]}</nowiki></code></td></tr> |
|||
</table> |
|||
1 + q + q + q - 2 q + q + q - q</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 43]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 43]], KnotSignature[Knot[9, 43]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{13, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 43]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 |
|||
1 - q + 2 q - 2 q + 2 q - 2 q + 2 q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 43], Knot[11, NonAlternating, 12]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 43]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 12 18 20 26 |
|||
1 + q + q + q - 2 q + q + q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 43]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 4 6 |
|||
-8 3 4 3 4 z 7 z 4 z z 5 z z z |
|||
-a + -- - -- + -- + ---- - ---- + ---- + -- - ---- + -- - -- |
|||
6 4 2 6 4 2 6 4 2 4 |
|||
a a a a a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 43]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 3 |
|||
-8 3 4 3 z z 2 z 9 z 14 z 7 z 2 z |
-8 3 4 3 z z 2 z 9 z 14 z 7 z 2 z |
||
-a - -- - -- - -- + -- + -- + ---- + ---- + ----- + ---- - ---- + |
-a - -- - -- - -- + -- + -- + ---- + ---- + ----- + ---- - ---- + |
||
Line 97: | Line 202: | ||
-- + -- + -- |
-- + -- + -- |
||
2 5 3 |
2 5 3 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 43]], Vassiliev[3][Knot[9, 43]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 2}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 43]], Vassiliev[3][Knot[9, 43]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 43]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
3 5 1 q 5 7 7 2 9 2 9 3 11 3 |
3 5 1 q 5 7 7 2 9 2 9 3 11 3 |
||
2 q + q + ---- + -- + q t + q t + q t + q t + q t + q t + |
2 q + q + ---- + -- + q t + q t + q t + q t + q t + q t + |
||
Line 108: | Line 223: | ||
11 4 13 4 15 5 |
11 4 13 4 15 5 |
||
q t + q t + q t</nowiki></ |
q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
[[Category:Knot Page]] |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 43], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 1 2 3 4 6 7 8 9 10 |
|||
-1 + q - - + 3 q - q - 3 q + 4 q - 3 q + 3 q + q - 3 q + q + |
|||
q |
|||
11 12 13 14 15 16 17 |
|||
2 q - 2 q - q + 2 q - q - q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 43's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X15,1,16,18 X11,17,12,16 X17,13,18,12 X6,14,7,13 |
Gauss code | 1, -4, 3, -1, 2, -9, 5, -3, 4, -2, -7, 8, 9, -5, -6, 7, -8, 6 |
Dowker-Thistlethwaite code | 4 8 10 14 2 -16 6 -18 -12 |
Conway Notation | [211,3,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 9, width is 4, Braid index is 4 |
[{5, 10}, {9, 1}, {10, 8}, {6, 9}, {4, 7}, {3, 6}, {2, 5}, {1, 4}, {7, 2}, {8, 3}] |
[edit Notes on presentations of 9 43]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 43"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X15,1,16,18 X11,17,12,16 X17,13,18,12 X6,14,7,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 2, -9, 5, -3, 4, -2, -7, 8, 9, -5, -6, 7, -8, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 14 2 -16 6 -18 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[211,3,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 9, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 10}, {9, 1}, {10, 8}, {6, 9}, {4, 7}, {3, 6}, {2, 5}, {1, 4}, {7, 2}, {8, 3}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 43"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 13, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n12,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 43"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n12,} |
Vassiliev invariants
V2 and V3: | (1, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 43. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|