Braid Representatives: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(24 intermediate revisions by 6 users not shown)
Line 7: Line 7:
<!--$$?BR$$-->
<!--$$?BR$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout1|n=1|s=BR}}
n = 2 |
BR stands for Braid Representative. BR[k,l] represents a braid on k strands with crossings l={i1,i2,...}, where a positive index i within the list l indicates a right-handed crossing between strand number i and strand number i+1 and a negative i indicates a left handed crossing between strands numbers |i| and |i|+1. Each ij can also be a list of non-adjacent (i.e., commuting) indices. BR also acts as a "type caster": BR[K] will return a braid whose closure is K if K is given in any format that KnotTheory` understands. BR[K] where K is is a named knot with up to 10 crossings returns a minimum braid representative for that knot.
n1 = 3 |
{{HelpAndAbout2|n=2|s=BR}}
in = <nowiki>BR</nowiki> |
The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See his article on the subject at arXiv:math.GT/0401051. Vogel's algorithm was implemented by Dan Carney in the summer of 2005 at the University of Toronto.
out= <nowiki>BR stands for Braid Representative. BR[k, l] represents a braid on k strands with crossings l={i1, i2, ...}, where a positive index i within the list l indicates a right-handed crossing between strand number i and strand number i+1 and a negative i indicates a left handed crossing between strands numbers &#124;i&#124; and &#124;i&#124;+1. Each ij can also be a list of non-adjacent (i.e., commuting) indices. BR also acts as a "type caster":
{{HelpAndAbout3}}
BR[K] will return a braid whose closure is K if K is given in any format that KnotTheory` understands. BR[K] where K is is a named knot with up to 10 crossings returns a minimum braid representative for that knot.</nowiki> |
about= <nowiki>The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See his article on the subject at arXiv:math.GT/0401051.
Vogel's algorithm was implemented by Dan Carney in the summer of 2005 at the University of Toronto.</nowiki>}}
<!--END-->
<!--END-->


<!--$$?Mirror$$-->
<!--$$?Mirror$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
{{Help1|n=3|s=Mirror}}
n = 4 |
Mirror[br] return the mirror braid of br.
in = <nowiki>Mirror</nowiki> |
{{Help2}}
out= <nowiki>Mirror[br] return the mirror braid of br.</nowiki>}}
<!--END-->
<!--END-->


Line 25: Line 29:
<!--$$br1 = BR[2, {-1, -1, -1}];$$-->
<!--$$br1 = BR[2, {-1, -1, -1}];$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In1|n=4}}
{{In|
n = 5 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>br1 = BR[2, {-1, -1, -1}];</nowiki></pre>
in = <nowiki>br1 = BR[2, {-1, -1, -1}];</nowiki>}}
{{In2}}
<!--END-->
<!--END-->


Line 33: Line 37:
<!--$$PD[br1]$$-->
<!--$$PD[br1]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=5}}
{{InOut|
n = 6 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[br1]</nowiki></pre>
in = <nowiki>PD[br1]</nowiki> |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki>PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]</nowiki></pre>
out= <nowiki>PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Jones[br1][q]$$-->
<!--$$Jones[br1][q]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=6}}
{{InOut|
n = 7 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[br1][q]</nowiki></pre>
in = <nowiki>Jones[br1][q]</nowiki> |
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki> -4 -3 1
out= <nowiki> -4 -3 1
-q + q + -
-q + q + -
q</nowiki></pre>
q</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Mirror[br1]$$-->
<!--$$Mirror[br1]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=7}}
{{InOut|
n = 8 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Mirror[br1]</nowiki></pre>
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1}]</nowiki></pre>
in = <nowiki>Mirror[br1]</nowiki> |
out= <nowiki>BR[2, {1, 1, 1}]</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


{{Knot Image Pair|T(5,4)|jpg|K11a362|gif}}
<code>KnotTheory`</code> has the braid representatives of some knots and links pre-loaded. Thus for example,

<code>KnotTheory`</code> has the braid representatives of some knots and links pre-loaded, and for all other knots and links it will find a braid representative using Vogel's algorithm. Thus for example,


<!--$$BR[TorusKnot[5, 4]]$$-->
<!--$$BR[TorusKnot[5, 4]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=8}}
{{InOut|
n = 9 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[5, 4]]</nowiki></pre>
in = <nowiki>BR[TorusKnot[5, 4]]</nowiki> |
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]</nowiki></pre>
out= <nowiki>BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$BR[Knot[11, Alternating, 362]]$$-->
The ''minimum braid representative'' of a given knot is a braid representative for that knot which has a minimal number of braid crossings and within those braid representatives with a minimal number of braid crossings, it has a minimal number of strands (full details are in {{ref|Gittings}}). Thomas Gittings kindly provided us the minimum braid representatives for all knots with up to 10 crossings. Thus for example, the minimum braid representative for the knot {{10_1}} has length (number of crossings) 13 and width 6 (number of strands, also see [[Invariants from Braid Theory]]):
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 10 |
in = <nowiki>BR[Knot[11, Alternating, 362]]</nowiki> |
out= <nowiki>BR[10, {1, 2, -3, -4, 5, 6, 5, 4, 3, -2, -1, -4, 3, -2, -4, 3, 5, 4,
-6, 7, -6, 5, 8, 7, 6, 5, -4, -3, 2, 5, -6, 9, -8, 7, -6, 5, 4, -3,
5, 6, 5, 4, 5, -7, 8, -7, 6, 5, -9, -8, -7}]</nowiki>}}
<!--END-->

(As we see, Vogel's algorithm sometimes produces scary results. A <!--$Crossings[BR[Knot[11, Alternating, 362]]]$--><!--Robot Land, no human edits to "END"-->51<!--END-->-crossings braid representative for an 11-crossing knot, in the case of [[K11a362]]).

{{Knot Image Pair|10_1|gif|5_2|gif}}

The ''minimum braid representative'' of a given knot is a braid representative for that knot which has a minimal number of braid crossings and within those braid representatives with a minimal number of braid crossings, it has a minimal number of strands (full details are in {{ref|Gittings}}). Thomas Gittings kindly provided us the minimum braid representatives for all knots with up to 10 crossings. Thus for example, the minimum braid representative for the knot [[10_1]] has length (number of crossings) 13 and width 6 (number of strands, also see [[Invariants from Braid Theory]]):


<!--$$br2 = BR[Knot[10, 1]]$$-->
<!--$$br2 = BR[Knot[10, 1]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut1|n=9}}
{{InOut|
n = 11 |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>br2 = BR[Knot[10, 1]]</nowiki></pre>
in = <nowiki>br2 = BR[Knot[10, 1]]</nowiki> |
{{InOut2|n=9}}<pre style="border: 0px; padding: 0em"><nowiki>BR[6, {-1, -1, -2, 1, -2, -3, 2, -3, -4, 3, 5, -4, 5}]</nowiki></pre>
out= <nowiki>BR[6, {-1, -1, -2, 1, -2, -3, 2, -3, -4, 3, 5, -4, 5}]</nowiki>}}
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Show[BraidPlot[CollapseBraid[br2]]]$$-->
<!--$$Show[BraidPlot[CollapseBraid[br2]]]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics1|n=10}}
n = 12 |
Show[BraidPlot[CollapseBraid[br2]]]
in = <nowiki>Show[BraidPlot[CollapseBraid[br2]]]</nowiki> |
{{Graphics2|n=10|imagename=Braid_Representatives_Out_10.gif}}
img= Braid_Representatives_Out_12.gif |
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->

Already for the knot [[5_2]] the minimum braid is shorter than the braid produced by Vogel's algorithm. Indeed, the minimum braid is

<!--$$Show[BraidPlot[CollapseBraid[BR[Knot[5, 2]]]]]$$-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
n = 13 |
in = <nowiki>Show[BraidPlot[CollapseBraid[BR[Knot[5, 2]]]]]</nowiki> |
img= Braid_Representatives_Out_13.gif |
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->

To force <code>KnotTheory`</code> to run Vogel's algorithm on [[5_2]], we first convert it to its <code>PD</code> form,

<!--$$pd = PD[Knot[5, 2]]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 14 |
in = <nowiki>pd = PD[Knot[5, 2]]</nowiki> |
out= <nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 10, 6, 1], X[9, 6, 10, 7],
X[7, 2, 8, 3]]</nowiki>}}
<!--END-->

and only then run <code>BR</code>:

<!--$$Show[BraidPlot[CollapseBraid[BR[pd]]]]$$-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
n = 15 |
in = <nowiki>Show[BraidPlot[CollapseBraid[BR[pd]]]]</nowiki> |
img= Braid_Representatives_Out_15.gif |
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->


Line 87: Line 145:


{{note|Gittings}} T. A. Gittings, ''Minimum braids: a complete invariant of knots and links'', {{arXiv|math.GT/0401051}}.
{{note|Gittings}} T. A. Gittings, ''Minimum braids: a complete invariant of knots and links'', {{arXiv|math.GT/0401051}}.

[[Category:Manual]]

Latest revision as of 17:11, 21 February 2013


Every knot and every link is the closure of a braid. KnotTheory` can also represent knots and links as braid closures:

(For In[1] see Setup)

In[2]:= ?BR
BR stands for Braid Representative. BR[k, l] represents a braid on k strands with crossings l={i1, i2, ...}, where a positive index i within the list l indicates a right-handed crossing between strand number i and strand number i+1 and a negative i indicates a left handed crossing between strands numbers |i| and |i|+1. Each ij can also be a list of non-adjacent (i.e., commuting) indices. BR also acts as a "type caster": BR[K] will return a braid whose closure is K if K is given in any format that KnotTheory` understands. BR[K] where K is is a named knot with up to 10 crossings returns a minimum braid representative for that knot.
In[3]:= BR::about
The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See his article on the subject at arXiv:math.GT/0401051. Vogel's algorithm was implemented by Dan Carney in the summer of 2005 at the University of Toronto.
In[4]:= ?Mirror
Mirror[br] return the mirror braid of br.

Thus for example,

In[5]:= br1 = BR[2, {-1, -1, -1}];


In[6]:= PD[br1]
Out[6]= PD[X[6, 3, 1, 4], X[4, 1, 5, 2], X[2, 5, 3, 6]]
In[7]:= Jones[br1][q]
Out[7]= -4 -3 1 -q + q + - q
In[8]:= Mirror[br1]
Out[8]= BR[2, {1, 1, 1}]
T(5,4).jpg
T(5,4)
K11a362.gif
K11a362

KnotTheory` has the braid representatives of some knots and links pre-loaded, and for all other knots and links it will find a braid representative using Vogel's algorithm. Thus for example,

In[9]:= BR[TorusKnot[5, 4]]
Out[9]= BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]
In[10]:= BR[Knot[11, Alternating, 362]]
Out[10]= BR[10, {1, 2, -3, -4, 5, 6, 5, 4, 3, -2, -1, -4, 3, -2, -4, 3, 5, 4, -6, 7, -6, 5, 8, 7, 6, 5, -4, -3, 2, 5, -6, 9, -8, 7, -6, 5, 4, -3, 5, 6, 5, 4, 5, -7, 8, -7, 6, 5, -9, -8, -7}]

(As we see, Vogel's algorithm sometimes produces scary results. A 51-crossings braid representative for an 11-crossing knot, in the case of K11a362).

10 1.gif
10_1
5 2.gif
5_2

The minimum braid representative of a given knot is a braid representative for that knot which has a minimal number of braid crossings and within those braid representatives with a minimal number of braid crossings, it has a minimal number of strands (full details are in [Gittings]). Thomas Gittings kindly provided us the minimum braid representatives for all knots with up to 10 crossings. Thus for example, the minimum braid representative for the knot 10_1 has length (number of crossings) 13 and width 6 (number of strands, also see Invariants from Braid Theory):

In[11]:= br2 = BR[Knot[10, 1]]
Out[11]= BR[6, {-1, -1, -2, 1, -2, -3, 2, -3, -4, 3, 5, -4, 5}]
In[12]:= Show[BraidPlot[CollapseBraid[br2]]]
Braid Representatives Out 12.gif
Out[12]= -Graphics-

Already for the knot 5_2 the minimum braid is shorter than the braid produced by Vogel's algorithm. Indeed, the minimum braid is

In[13]:= Show[BraidPlot[CollapseBraid[BR[Knot[5, 2]]]]]
Braid Representatives Out 13.gif
Out[13]= -Graphics-

To force KnotTheory` to run Vogel's algorithm on 5_2, we first convert it to its PD form,

In[14]:= pd = PD[Knot[5, 2]]
Out[14]= PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 10, 6, 1], X[9, 6, 10, 7], X[7, 2, 8, 3]]

and only then run BR:

In[15]:= Show[BraidPlot[CollapseBraid[BR[pd]]]]
Braid Representatives Out 15.gif
Out[15]= -Graphics-

(Check Drawing Braids for information about the command BraidPlot and the related command CollapseBraid.)

[Gittings] ^  T. A. Gittings, Minimum braids: a complete invariant of knots and links, arXiv:math.GT/0401051.