7 4: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 7 |
<!-- provide an anchor so we can return to the top of the page -->
k = 4 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,6,-7,2,-1,3,-4,7,-6,5,-2,4,-3/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=7|k=4|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,6,-7,2,-1,3,-4,7,-6,5,-2,4,-3/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 9 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 9, width is 4.
braid_index = 4 |

same_alexander = [[9_2]], |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{[[9_2]], ...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=8.33333%>3</td ><td width=8.33333%>4</td ><td width=8.33333%>5</td ><td width=8.33333%>6</td ><td width=8.33333%>7</td ><td width=16.6667%>&chi;</td></tr>
<td width=8.33333%>0</td ><td width=8.33333%>1</td ><td width=8.33333%>2</td ><td width=8.33333%>3</td ><td width=8.33333%>4</td ><td width=8.33333%>5</td ><td width=8.33333%>6</td ><td width=8.33333%>7</td ><td width=16.6667%>&chi;</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>0</td></tr>
Line 70: Line 37:
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{23}-q^{22}-q^{21}+3 q^{20}-q^{19}-4 q^{18}+5 q^{17}-q^{16}-7 q^{15}+7 q^{14}+q^{13}-8 q^{12}+7 q^{11}+3 q^{10}-9 q^9+6 q^8+2 q^7-6 q^6+4 q^5+q^4-2 q^3+q^2</math> |

coloured_jones_3 = <math>-q^{45}+q^{44}+q^{43}-3 q^{41}+3 q^{39}+3 q^{38}-5 q^{37}-3 q^{36}+4 q^{35}+7 q^{34}-5 q^{33}-7 q^{32}+3 q^{31}+9 q^{30}-3 q^{29}-11 q^{28}+2 q^{27}+10 q^{26}+q^{25}-13 q^{24}-q^{23}+11 q^{22}+6 q^{21}-15 q^{20}-3 q^{19}+11 q^{18}+7 q^{17}-13 q^{16}-4 q^{15}+9 q^{14}+5 q^{13}-8 q^{12}-2 q^{11}+6 q^{10}+q^9-4 q^8+2 q^6+q^5-2 q^4+q^3</math> |
{{Display Coloured Jones|J2=<math>q^{23}-q^{22}-q^{21}+3 q^{20}-q^{19}-4 q^{18}+5 q^{17}-q^{16}-7 q^{15}+7 q^{14}+q^{13}-8 q^{12}+7 q^{11}+3 q^{10}-9 q^9+6 q^8+2 q^7-6 q^6+4 q^5+q^4-2 q^3+q^2</math>|J3=<math>-q^{45}+q^{44}+q^{43}-3 q^{41}+3 q^{39}+3 q^{38}-5 q^{37}-3 q^{36}+4 q^{35}+7 q^{34}-5 q^{33}-7 q^{32}+3 q^{31}+9 q^{30}-3 q^{29}-11 q^{28}+2 q^{27}+10 q^{26}+q^{25}-13 q^{24}-q^{23}+11 q^{22}+6 q^{21}-15 q^{20}-3 q^{19}+11 q^{18}+7 q^{17}-13 q^{16}-4 q^{15}+9 q^{14}+5 q^{13}-8 q^{12}-2 q^{11}+6 q^{10}+q^9-4 q^8+2 q^6+q^5-2 q^4+q^3</math>|J4=<math>q^{74}-q^{73}-q^{72}+4 q^{69}-q^{68}-2 q^{67}-2 q^{66}-4 q^{65}+8 q^{64}+2 q^{63}-4 q^{61}-11 q^{60}+9 q^{59}+4 q^{58}+6 q^{57}-2 q^{56}-18 q^{55}+7 q^{54}+2 q^{53}+12 q^{52}+4 q^{51}-22 q^{50}+6 q^{49}-5 q^{48}+15 q^{47}+10 q^{46}-23 q^{45}+5 q^{44}-12 q^{43}+15 q^{42}+17 q^{41}-21 q^{40}+2 q^{39}-19 q^{38}+17 q^{37}+23 q^{36}-19 q^{35}-q^{34}-25 q^{33}+18 q^{32}+26 q^{31}-14 q^{30}-3 q^{29}-28 q^{28}+16 q^{27}+26 q^{26}-11 q^{25}-25 q^{23}+10 q^{22}+20 q^{21}-9 q^{20}+4 q^{19}-16 q^{18}+6 q^{17}+10 q^{16}-8 q^{15}+5 q^{14}-7 q^{13}+4 q^{12}+4 q^{11}-5 q^{10}+2 q^9-2 q^8+2 q^7+q^6-2 q^5+q^4</math>|J5=<math>-q^{110}+q^{109}+q^{108}-q^{105}-3 q^{104}+3 q^{102}+2 q^{101}+2 q^{100}+q^{99}-6 q^{98}-5 q^{97}+3 q^{95}+7 q^{94}+7 q^{93}-4 q^{92}-9 q^{91}-7 q^{90}-3 q^{89}+8 q^{88}+14 q^{87}+4 q^{86}-6 q^{85}-11 q^{84}-13 q^{83}+q^{82}+15 q^{81}+12 q^{80}+2 q^{79}-6 q^{78}-18 q^{77}-9 q^{76}+7 q^{75}+15 q^{74}+11 q^{73}+3 q^{72}-14 q^{71}-15 q^{70}-7 q^{69}+11 q^{68}+16 q^{67}+12 q^{66}-4 q^{65}-19 q^{64}-19 q^{63}+4 q^{62}+20 q^{61}+20 q^{60}+4 q^{59}-21 q^{58}-30 q^{57}-2 q^{56}+25 q^{55}+25 q^{54}+12 q^{53}-25 q^{52}-40 q^{51}-7 q^{50}+29 q^{49}+33 q^{48}+19 q^{47}-29 q^{46}-49 q^{45}-11 q^{44}+30 q^{43}+39 q^{42}+24 q^{41}-26 q^{40}-50 q^{39}-18 q^{38}+24 q^{37}+38 q^{36}+25 q^{35}-16 q^{34}-40 q^{33}-20 q^{32}+12 q^{31}+27 q^{30}+21 q^{29}-7 q^{28}-21 q^{27}-14 q^{26}+3 q^{25}+13 q^{24}+11 q^{23}-3 q^{22}-7 q^{21}-5 q^{20}+2 q^{19}+2 q^{18}+4 q^{17}-2 q^{16}-3 q^{15}+2 q^{14}+2 q^{13}-2 q^{12}+q^{11}-2 q^9+2 q^8+q^7-2 q^6+q^5</math>|J6=<math>q^{153}-q^{152}-q^{151}+q^{148}+4 q^{146}-q^{145}-3 q^{144}-2 q^{143}-2 q^{142}-2 q^{140}+10 q^{139}+3 q^{138}-2 q^{136}-5 q^{135}-6 q^{134}-12 q^{133}+12 q^{132}+7 q^{131}+8 q^{130}+5 q^{129}+q^{128}-9 q^{127}-26 q^{126}+4 q^{125}+12 q^{123}+13 q^{122}+18 q^{121}-32 q^{119}-3 q^{118}-17 q^{117}+3 q^{116}+8 q^{115}+33 q^{114}+17 q^{113}-23 q^{112}+3 q^{111}-29 q^{110}-14 q^{109}-12 q^{108}+35 q^{107}+27 q^{106}-9 q^{105}+25 q^{104}-25 q^{103}-26 q^{102}-38 q^{101}+23 q^{100}+23 q^{99}+q^{98}+52 q^{97}-7 q^{96}-25 q^{95}-61 q^{94}+5 q^{93}+8 q^{92}+2 q^{91}+74 q^{90}+17 q^{89}-16 q^{88}-76 q^{87}-11 q^{86}-9 q^{85}-2 q^{84}+88 q^{83}+38 q^{82}-4 q^{81}-86 q^{80}-23 q^{79}-25 q^{78}-4 q^{77}+98 q^{76}+56 q^{75}+2 q^{74}-96 q^{73}-34 q^{72}-40 q^{71}+2 q^{70}+110 q^{69}+69 q^{68}+4 q^{67}-108 q^{66}-46 q^{65}-50 q^{64}+9 q^{63}+122 q^{62}+81 q^{61}+9 q^{60}-115 q^{59}-58 q^{58}-60 q^{57}+7 q^{56}+124 q^{55}+91 q^{54}+19 q^{53}-105 q^{52}-61 q^{51}-68 q^{50}-8 q^{49}+106 q^{48}+91 q^{47}+31 q^{46}-78 q^{45}-46 q^{44}-64 q^{43}-25 q^{42}+74 q^{41}+70 q^{40}+33 q^{39}-47 q^{38}-22 q^{37}-44 q^{36}-29 q^{35}+43 q^{34}+38 q^{33}+21 q^{32}-26 q^{31}-2 q^{30}-20 q^{29}-20 q^{28}+22 q^{27}+14 q^{26}+7 q^{25}-14 q^{24}+6 q^{23}-5 q^{22}-9 q^{21}+9 q^{20}+2 q^{19}+q^{18}-7 q^{17}+6 q^{16}-4 q^{14}+4 q^{13}-q^{12}-2 q^{10}+2 q^9+q^8-2 q^7+q^6</math>|J7=<math>-q^{203}+q^{202}+q^{201}-q^{198}-q^{196}-3 q^{195}+q^{194}+3 q^{193}+2 q^{192}+3 q^{191}-q^{190}-9 q^{187}-4 q^{186}+2 q^{184}+8 q^{183}+3 q^{182}+7 q^{181}+8 q^{180}-10 q^{179}-10 q^{178}-10 q^{177}-10 q^{176}+5 q^{175}+2 q^{174}+13 q^{173}+24 q^{172}+3 q^{171}-q^{170}-12 q^{169}-25 q^{168}-10 q^{167}-15 q^{166}+3 q^{165}+31 q^{164}+17 q^{163}+22 q^{162}+9 q^{161}-22 q^{160}-15 q^{159}-36 q^{158}-24 q^{157}+14 q^{156}+9 q^{155}+34 q^{154}+37 q^{153}+5 q^{152}+7 q^{151}-36 q^{150}-45 q^{149}-12 q^{148}-23 q^{147}+14 q^{146}+44 q^{145}+29 q^{144}+47 q^{143}-6 q^{142}-37 q^{141}-22 q^{140}-61 q^{139}-26 q^{138}+18 q^{137}+25 q^{136}+78 q^{135}+40 q^{134}-3 q^{133}-5 q^{132}-80 q^{131}-65 q^{130}-25 q^{129}-10 q^{128}+86 q^{127}+79 q^{126}+41 q^{125}+34 q^{124}-77 q^{123}-88 q^{122}-69 q^{121}-58 q^{120}+70 q^{119}+99 q^{118}+81 q^{117}+79 q^{116}-55 q^{115}-97 q^{114}-101 q^{113}-104 q^{112}+41 q^{111}+105 q^{110}+112 q^{109}+120 q^{108}-29 q^{107}-96 q^{106}-124 q^{105}-144 q^{104}+15 q^{103}+108 q^{102}+136 q^{101}+150 q^{100}-10 q^{99}-99 q^{98}-143 q^{97}-174 q^{96}+q^{95}+118 q^{94}+157 q^{93}+169 q^{92}-2 q^{91}-110 q^{90}-165 q^{89}-194 q^{88}-3 q^{87}+137 q^{86}+179 q^{85}+185 q^{84}+3 q^{83}-129 q^{82}-188 q^{81}-212 q^{80}-7 q^{79}+151 q^{78}+199 q^{77}+204 q^{76}+14 q^{75}-133 q^{74}-202 q^{73}-229 q^{72}-30 q^{71}+138 q^{70}+204 q^{69}+220 q^{68}+40 q^{67}-107 q^{66}-187 q^{65}-233 q^{64}-60 q^{63}+93 q^{62}+173 q^{61}+213 q^{60}+67 q^{59}-59 q^{58}-142 q^{57}-200 q^{56}-72 q^{55}+39 q^{54}+113 q^{53}+167 q^{52}+69 q^{51}-21 q^{50}-83 q^{49}-138 q^{48}-52 q^{47}+10 q^{46}+53 q^{45}+103 q^{44}+43 q^{43}-5 q^{42}-37 q^{41}-75 q^{40}-21 q^{39}+4 q^{38}+18 q^{37}+48 q^{36}+13 q^{35}-q^{34}-10 q^{33}-34 q^{32}-3 q^{31}+5 q^{30}+4 q^{29}+15 q^{28}-q^{27}+q^{26}+2 q^{25}-14 q^{24}+2 q^{23}+4 q^{22}+2 q^{20}-4 q^{19}+2 q^{18}+4 q^{17}-6 q^{16}+2 q^{15}+2 q^{14}-q^{13}-2 q^{11}+2 q^{10}+q^9-2 q^8+q^7</math>}}
coloured_jones_4 = <math>q^{74}-q^{73}-q^{72}+4 q^{69}-q^{68}-2 q^{67}-2 q^{66}-4 q^{65}+8 q^{64}+2 q^{63}-4 q^{61}-11 q^{60}+9 q^{59}+4 q^{58}+6 q^{57}-2 q^{56}-18 q^{55}+7 q^{54}+2 q^{53}+12 q^{52}+4 q^{51}-22 q^{50}+6 q^{49}-5 q^{48}+15 q^{47}+10 q^{46}-23 q^{45}+5 q^{44}-12 q^{43}+15 q^{42}+17 q^{41}-21 q^{40}+2 q^{39}-19 q^{38}+17 q^{37}+23 q^{36}-19 q^{35}-q^{34}-25 q^{33}+18 q^{32}+26 q^{31}-14 q^{30}-3 q^{29}-28 q^{28}+16 q^{27}+26 q^{26}-11 q^{25}-25 q^{23}+10 q^{22}+20 q^{21}-9 q^{20}+4 q^{19}-16 q^{18}+6 q^{17}+10 q^{16}-8 q^{15}+5 q^{14}-7 q^{13}+4 q^{12}+4 q^{11}-5 q^{10}+2 q^9-2 q^8+2 q^7+q^6-2 q^5+q^4</math> |

coloured_jones_5 = <math>-q^{110}+q^{109}+q^{108}-q^{105}-3 q^{104}+3 q^{102}+2 q^{101}+2 q^{100}+q^{99}-6 q^{98}-5 q^{97}+3 q^{95}+7 q^{94}+7 q^{93}-4 q^{92}-9 q^{91}-7 q^{90}-3 q^{89}+8 q^{88}+14 q^{87}+4 q^{86}-6 q^{85}-11 q^{84}-13 q^{83}+q^{82}+15 q^{81}+12 q^{80}+2 q^{79}-6 q^{78}-18 q^{77}-9 q^{76}+7 q^{75}+15 q^{74}+11 q^{73}+3 q^{72}-14 q^{71}-15 q^{70}-7 q^{69}+11 q^{68}+16 q^{67}+12 q^{66}-4 q^{65}-19 q^{64}-19 q^{63}+4 q^{62}+20 q^{61}+20 q^{60}+4 q^{59}-21 q^{58}-30 q^{57}-2 q^{56}+25 q^{55}+25 q^{54}+12 q^{53}-25 q^{52}-40 q^{51}-7 q^{50}+29 q^{49}+33 q^{48}+19 q^{47}-29 q^{46}-49 q^{45}-11 q^{44}+30 q^{43}+39 q^{42}+24 q^{41}-26 q^{40}-50 q^{39}-18 q^{38}+24 q^{37}+38 q^{36}+25 q^{35}-16 q^{34}-40 q^{33}-20 q^{32}+12 q^{31}+27 q^{30}+21 q^{29}-7 q^{28}-21 q^{27}-14 q^{26}+3 q^{25}+13 q^{24}+11 q^{23}-3 q^{22}-7 q^{21}-5 q^{20}+2 q^{19}+2 q^{18}+4 q^{17}-2 q^{16}-3 q^{15}+2 q^{14}+2 q^{13}-2 q^{12}+q^{11}-2 q^9+2 q^8+q^7-2 q^6+q^5</math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{153}-q^{152}-q^{151}+q^{148}+4 q^{146}-q^{145}-3 q^{144}-2 q^{143}-2 q^{142}-2 q^{140}+10 q^{139}+3 q^{138}-2 q^{136}-5 q^{135}-6 q^{134}-12 q^{133}+12 q^{132}+7 q^{131}+8 q^{130}+5 q^{129}+q^{128}-9 q^{127}-26 q^{126}+4 q^{125}+12 q^{123}+13 q^{122}+18 q^{121}-32 q^{119}-3 q^{118}-17 q^{117}+3 q^{116}+8 q^{115}+33 q^{114}+17 q^{113}-23 q^{112}+3 q^{111}-29 q^{110}-14 q^{109}-12 q^{108}+35 q^{107}+27 q^{106}-9 q^{105}+25 q^{104}-25 q^{103}-26 q^{102}-38 q^{101}+23 q^{100}+23 q^{99}+q^{98}+52 q^{97}-7 q^{96}-25 q^{95}-61 q^{94}+5 q^{93}+8 q^{92}+2 q^{91}+74 q^{90}+17 q^{89}-16 q^{88}-76 q^{87}-11 q^{86}-9 q^{85}-2 q^{84}+88 q^{83}+38 q^{82}-4 q^{81}-86 q^{80}-23 q^{79}-25 q^{78}-4 q^{77}+98 q^{76}+56 q^{75}+2 q^{74}-96 q^{73}-34 q^{72}-40 q^{71}+2 q^{70}+110 q^{69}+69 q^{68}+4 q^{67}-108 q^{66}-46 q^{65}-50 q^{64}+9 q^{63}+122 q^{62}+81 q^{61}+9 q^{60}-115 q^{59}-58 q^{58}-60 q^{57}+7 q^{56}+124 q^{55}+91 q^{54}+19 q^{53}-105 q^{52}-61 q^{51}-68 q^{50}-8 q^{49}+106 q^{48}+91 q^{47}+31 q^{46}-78 q^{45}-46 q^{44}-64 q^{43}-25 q^{42}+74 q^{41}+70 q^{40}+33 q^{39}-47 q^{38}-22 q^{37}-44 q^{36}-29 q^{35}+43 q^{34}+38 q^{33}+21 q^{32}-26 q^{31}-2 q^{30}-20 q^{29}-20 q^{28}+22 q^{27}+14 q^{26}+7 q^{25}-14 q^{24}+6 q^{23}-5 q^{22}-9 q^{21}+9 q^{20}+2 q^{19}+q^{18}-7 q^{17}+6 q^{16}-4 q^{14}+4 q^{13}-q^{12}-2 q^{10}+2 q^9+q^8-2 q^7+q^6</math> |

coloured_jones_7 = <math>-q^{203}+q^{202}+q^{201}-q^{198}-q^{196}-3 q^{195}+q^{194}+3 q^{193}+2 q^{192}+3 q^{191}-q^{190}-9 q^{187}-4 q^{186}+2 q^{184}+8 q^{183}+3 q^{182}+7 q^{181}+8 q^{180}-10 q^{179}-10 q^{178}-10 q^{177}-10 q^{176}+5 q^{175}+2 q^{174}+13 q^{173}+24 q^{172}+3 q^{171}-q^{170}-12 q^{169}-25 q^{168}-10 q^{167}-15 q^{166}+3 q^{165}+31 q^{164}+17 q^{163}+22 q^{162}+9 q^{161}-22 q^{160}-15 q^{159}-36 q^{158}-24 q^{157}+14 q^{156}+9 q^{155}+34 q^{154}+37 q^{153}+5 q^{152}+7 q^{151}-36 q^{150}-45 q^{149}-12 q^{148}-23 q^{147}+14 q^{146}+44 q^{145}+29 q^{144}+47 q^{143}-6 q^{142}-37 q^{141}-22 q^{140}-61 q^{139}-26 q^{138}+18 q^{137}+25 q^{136}+78 q^{135}+40 q^{134}-3 q^{133}-5 q^{132}-80 q^{131}-65 q^{130}-25 q^{129}-10 q^{128}+86 q^{127}+79 q^{126}+41 q^{125}+34 q^{124}-77 q^{123}-88 q^{122}-69 q^{121}-58 q^{120}+70 q^{119}+99 q^{118}+81 q^{117}+79 q^{116}-55 q^{115}-97 q^{114}-101 q^{113}-104 q^{112}+41 q^{111}+105 q^{110}+112 q^{109}+120 q^{108}-29 q^{107}-96 q^{106}-124 q^{105}-144 q^{104}+15 q^{103}+108 q^{102}+136 q^{101}+150 q^{100}-10 q^{99}-99 q^{98}-143 q^{97}-174 q^{96}+q^{95}+118 q^{94}+157 q^{93}+169 q^{92}-2 q^{91}-110 q^{90}-165 q^{89}-194 q^{88}-3 q^{87}+137 q^{86}+179 q^{85}+185 q^{84}+3 q^{83}-129 q^{82}-188 q^{81}-212 q^{80}-7 q^{79}+151 q^{78}+199 q^{77}+204 q^{76}+14 q^{75}-133 q^{74}-202 q^{73}-229 q^{72}-30 q^{71}+138 q^{70}+204 q^{69}+220 q^{68}+40 q^{67}-107 q^{66}-187 q^{65}-233 q^{64}-60 q^{63}+93 q^{62}+173 q^{61}+213 q^{60}+67 q^{59}-59 q^{58}-142 q^{57}-200 q^{56}-72 q^{55}+39 q^{54}+113 q^{53}+167 q^{52}+69 q^{51}-21 q^{50}-83 q^{49}-138 q^{48}-52 q^{47}+10 q^{46}+53 q^{45}+103 q^{44}+43 q^{43}-5 q^{42}-37 q^{41}-75 q^{40}-21 q^{39}+4 q^{38}+18 q^{37}+48 q^{36}+13 q^{35}-q^{34}-10 q^{33}-34 q^{32}-3 q^{31}+5 q^{30}+4 q^{29}+15 q^{28}-q^{27}+q^{26}+2 q^{25}-14 q^{24}+2 q^{23}+4 q^{22}+2 q^{20}-4 q^{19}+2 q^{18}+4 q^{17}-6 q^{16}+2 q^{15}+2 q^{14}-q^{13}-2 q^{11}+2 q^{10}+q^9-2 q^8+q^7</math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[7, 4]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[12, 6, 13, 5], X[14, 8, 1, 7], X[8, 14, 9, 13],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[7, 4]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[12, 6, 13, 5], X[14, 8, 1, 7], X[8, 14, 9, 13],
X[2, 12, 3, 11], X[10, 4, 11, 3], X[4, 10, 5, 9]]</nowiki></pre></td></tr>
X[2, 12, 3, 11], X[10, 4, 11, 3], X[4, 10, 5, 9]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -5, 6, -7, 2, -1, 3, -4, 7, -6, 5, -2, 4, -3]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[7, 4]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[7, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 12, 14, 4, 2, 8]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -5, 6, -7, 2, -1, 3, -4, 7, -6, 5, -2, 4, -3]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[7, 4]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 2, -1, 2, 2, 3, -2, 3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[7, 4]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[7, 4]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 12, 14, 4, 2, 8]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[7, 4]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:7_4_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[7, 4]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[7, 4]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 1, 2, {3, 4}, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 2, -1, 2, 2, 3, -2, 3}]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 4]][t]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[7, 4]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[7, 4]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:7_4_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[7, 4]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 1, 2, {3, 4}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[7, 4]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4
-7 + - + 4 t
-7 + - + 4 t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 4]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[7, 4]][z]</nowiki></code></td></tr>
1 + 4 z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 4], Knot[9, 2]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2
1 + 4 z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[7, 4]], KnotSignature[Knot[7, 4]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, 2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[7, 4]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
q - 2 q + 3 q - 2 q + 3 q - 2 q + q - q</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 4], Knot[9, 2]}</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 4]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[7, 4]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[7, 4]], KnotSignature[Knot[7, 4]]}</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 8 10 12 14 16 20 24 26
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
q - q + q + q + 2 q + q + q - q - q - q</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{15, 2}</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[7, 4]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[7, 4]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 8
q - 2 q + 3 q - 2 q + 3 q - 2 q + q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[7, 4]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[7, 4]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 8 10 12 14 16 20 24 26
q - q + q + q + 2 q + q + q - q - q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[7, 4]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2
-8 2 z 2 z z
-8 2 z 2 z z
-a + -- + -- + ---- + --
-a + -- + -- + ---- + --
4 6 4 2
4 6 4 2
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 4]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 3 3 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[7, 4]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 3 3 3
-8 2 4 z 4 z 2 z 3 z 4 z z 4 z 8 z 2 z
-8 2 4 z 4 z 2 z 3 z 4 z z 4 z 8 z 2 z
-a + -- + --- + --- + ---- - ---- - ---- + -- - ---- - ---- - ---- +
-a + -- + --- + --- + ---- - ---- - ---- + -- - ---- - ---- - ---- +
Line 152: Line 193:
---- - ---- + ---- + -- + ---- + ---- + -- + --
---- - ---- + ---- + -- + ---- + ---- + -- + --
3 8 4 9 7 5 8 6
3 8 4 9 7 5 8 6
a a a a a a a a</nowiki></pre></td></tr>
a a a a a a a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 4]], Vassiliev[3][Knot[7, 4]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 8}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[7, 4]], Vassiliev[3][Knot[7, 4]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[7, 4]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 5 2 7 2 7 3 9 3 9 4 11 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 8}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[7, 4]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 3 5 2 7 2 7 3 9 3 9 4 11 4
q + q + 2 q t + q t + 2 q t + q t + q t + 2 q t + q t +
q + q + 2 q t + q t + 2 q t + q t + q t + 2 q t + q t +
13 5 13 6 17 7
13 5 13 6 17 7
2 q t + q t + q t</nowiki></pre></td></tr>
2 q t + q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[7, 4], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 11
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[7, 4], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 8 9 10 11
q - 2 q + q + 4 q - 6 q + 2 q + 6 q - 9 q + 3 q + 7 q -
q - 2 q + q + 4 q - 6 q + 2 q + 6 q - 9 q + 3 q + 7 q -
Line 172: Line 225:
21 22 23
21 22 23
q - q + q</nowiki></pre></td></tr>
q - q + q</nowiki></code></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Latest revision as of 16:59, 1 September 2005

7 3.gif

7_3

7 5.gif

7_5

7 4.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 7 4's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 7 4 at Knotilus!

Simplest version of Endless knot symbol.

Celtic or pseudo-Celtic knot
Mongolian ornament
Susan Williams' medallion [1], the "Endless knot" of Buddhism [2]
Ornamental "Endless knot"
a knot seen at the Castle of Kornik [3]
A 7-4 knot reduced from TakaraMusubi with 9 crossings [4]
TakaraMusubi knot seen in Japanese symbols, or Kolam in South India [5]
Buddhist Endless Knot
Ornamental Endless Knot
Albrecht Dürer knot, 16th-century
A laser cut by Tom Longtin [6]
Unicursal hexagram of occultism
Logo of the raelian sect
Lissajous curve : x=cos 3t , y=sin 2t, z=sin 7t
French europa stamp 2023


Knot presentations

Planar diagram presentation X6271 X12,6,13,5 X14,8,1,7 X8,14,9,13 X2,12,3,11 X10,4,11,3 X4,10,5,9
Gauss code 1, -5, 6, -7, 2, -1, 3, -4, 7, -6, 5, -2, 4, -3
Dowker-Thistlethwaite code 6 10 12 14 4 2 8
Conway Notation [313]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

7 4 ML.gif 7 4 AP.gif
[{3, 5}, {6, 4}, {5, 7}, {2, 6}, {8, 3}, {7, 9}, {1, 8}, {9, 2}, {4, 1}]

[edit Notes on presentations of 7 4]

Knot 7_4.
A graph, knot 7_4.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 1
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number Failed to parse (syntax error): {\displaystyle \text{$\$$Failed}}
Hyperbolic Volume 5.13794
A-Polynomial See Data:7 4/A-polynomial

[edit Notes for 7 4's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 7 4's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 15, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_2,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, 8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 7 4. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567χ
17       1-1
15        0
13     21 -1
11    1   1
9   12   1
7  21    1
5  1     1
312      -1
11       1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials