8 16: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 8 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 16 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,5,-6,2,-1,4,-5,6,-7,3,-4,8,-2,7,-3/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=8|k=16|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,5,-6,2,-1,4,-5,6,-7,3,-4,8,-2,7,-3/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 8 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 8, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[10_156]], [[K11n15]], [[K11n56]], [[K11n58]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = [[10_156]], | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_156]], [[K11n15]], [[K11n56]], [[K11n58]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[10_156]], ...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 70: | Line 37: | ||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^7-3 q^6-q^5+10 q^4-8 q^3-10 q^2+24 q-8-25 q^{-1} +35 q^{-2} -3 q^{-3} -37 q^{-4} +38 q^{-5} +4 q^{-6} -41 q^{-7} +32 q^{-8} +8 q^{-9} -32 q^{-10} +19 q^{-11} +7 q^{-12} -15 q^{-13} +6 q^{-14} +2 q^{-15} -3 q^{-16} + q^{-17} </math> | |
|||
coloured_jones_3 = <math>-q^{15}+3 q^{14}+q^{13}-5 q^{12}-8 q^{11}+8 q^{10}+20 q^9-8 q^8-33 q^7-3 q^6+51 q^5+18 q^4-61 q^3-43 q^2+70 q+65-64 q^{-1} -96 q^{-2} +63 q^{-3} +113 q^{-4} -46 q^{-5} -136 q^{-6} +37 q^{-7} +147 q^{-8} -19 q^{-9} -160 q^{-10} +8 q^{-11} +159 q^{-12} +8 q^{-13} -155 q^{-14} -20 q^{-15} +139 q^{-16} +31 q^{-17} -116 q^{-18} -35 q^{-19} +88 q^{-20} +33 q^{-21} -58 q^{-22} -28 q^{-23} +34 q^{-24} +19 q^{-25} -19 q^{-26} -8 q^{-27} +8 q^{-28} +3 q^{-29} -3 q^{-30} -2 q^{-31} +3 q^{-32} - q^{-33} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^7-3 q^6-q^5+10 q^4-8 q^3-10 q^2+24 q-8-25 q^{-1} +35 q^{-2} -3 q^{-3} -37 q^{-4} +38 q^{-5} +4 q^{-6} -41 q^{-7} +32 q^{-8} +8 q^{-9} -32 q^{-10} +19 q^{-11} +7 q^{-12} -15 q^{-13} +6 q^{-14} +2 q^{-15} -3 q^{-16} + q^{-17} </math>|J3=<math>-q^{15}+3 q^{14}+q^{13}-5 q^{12}-8 q^{11}+8 q^{10}+20 q^9-8 q^8-33 q^7-3 q^6+51 q^5+18 q^4-61 q^3-43 q^2+70 q+65-64 q^{-1} -96 q^{-2} +63 q^{-3} +113 q^{-4} -46 q^{-5} -136 q^{-6} +37 q^{-7} +147 q^{-8} -19 q^{-9} -160 q^{-10} +8 q^{-11} +159 q^{-12} +8 q^{-13} -155 q^{-14} -20 q^{-15} +139 q^{-16} +31 q^{-17} -116 q^{-18} -35 q^{-19} +88 q^{-20} +33 q^{-21} -58 q^{-22} -28 q^{-23} +34 q^{-24} +19 q^{-25} -19 q^{-26} -8 q^{-27} +8 q^{-28} +3 q^{-29} -3 q^{-30} -2 q^{-31} +3 q^{-32} - q^{-33} </math>|J4=<math>q^{26}-3 q^{25}-q^{24}+5 q^{23}+3 q^{22}+8 q^{21}-18 q^{20}-18 q^{19}+5 q^{18}+17 q^{17}+59 q^{16}-22 q^{15}-63 q^{14}-47 q^{13}-7 q^{12}+157 q^{11}+49 q^{10}-62 q^9-146 q^8-142 q^7+210 q^6+175 q^5+61 q^4-190 q^3-350 q^2+140 q+250+269 q^{-1} -116 q^{-2} -526 q^{-3} -16 q^{-4} +224 q^{-5} +466 q^{-6} +32 q^{-7} -619 q^{-8} -182 q^{-9} +140 q^{-10} +609 q^{-11} +182 q^{-12} -650 q^{-13} -319 q^{-14} +48 q^{-15} +694 q^{-16} +306 q^{-17} -625 q^{-18} -420 q^{-19} -50 q^{-20} +706 q^{-21} +401 q^{-22} -522 q^{-23} -454 q^{-24} -160 q^{-25} +596 q^{-26} +437 q^{-27} -330 q^{-28} -378 q^{-29} -239 q^{-30} +376 q^{-31} +362 q^{-32} -130 q^{-33} -206 q^{-34} -217 q^{-35} +153 q^{-36} +202 q^{-37} -23 q^{-38} -55 q^{-39} -117 q^{-40} +37 q^{-41} +67 q^{-42} -7 q^{-43} +3 q^{-44} -35 q^{-45} +8 q^{-46} +14 q^{-47} -7 q^{-48} +4 q^{-49} -6 q^{-50} +3 q^{-51} +2 q^{-52} -3 q^{-53} + q^{-54} </math>|J5=<math>-q^{40}+3 q^{39}+q^{38}-5 q^{37}-3 q^{36}-3 q^{35}+2 q^{34}+16 q^{33}+21 q^{32}-7 q^{31}-29 q^{30}-42 q^{29}-27 q^{28}+32 q^{27}+94 q^{26}+87 q^{25}-10 q^{24}-124 q^{23}-178 q^{22}-93 q^{21}+117 q^{20}+292 q^{19}+245 q^{18}-29 q^{17}-338 q^{16}-449 q^{15}-186 q^{14}+317 q^{13}+632 q^{12}+463 q^{11}-135 q^{10}-730 q^9-804 q^8-159 q^7+702 q^6+1080 q^5+579 q^4-520 q^3-1299 q^2-996 q+200+1351 q^{-1} +1442 q^{-2} +207 q^{-3} -1336 q^{-4} -1756 q^{-5} -654 q^{-6} +1152 q^{-7} +2062 q^{-8} +1089 q^{-9} -975 q^{-10} -2224 q^{-11} -1479 q^{-12} +708 q^{-13} +2379 q^{-14} +1833 q^{-15} -513 q^{-16} -2443 q^{-17} -2123 q^{-18} +276 q^{-19} +2526 q^{-20} +2379 q^{-21} -103 q^{-22} -2546 q^{-23} -2596 q^{-24} -107 q^{-25} +2567 q^{-26} +2779 q^{-27} +297 q^{-28} -2494 q^{-29} -2921 q^{-30} -542 q^{-31} +2366 q^{-32} +2993 q^{-33} +786 q^{-34} -2109 q^{-35} -2962 q^{-36} -1048 q^{-37} +1752 q^{-38} +2809 q^{-39} +1252 q^{-40} -1311 q^{-41} -2501 q^{-42} -1369 q^{-43} +837 q^{-44} +2065 q^{-45} +1370 q^{-46} -411 q^{-47} -1566 q^{-48} -1216 q^{-49} +77 q^{-50} +1060 q^{-51} +975 q^{-52} +125 q^{-53} -640 q^{-54} -696 q^{-55} -182 q^{-56} +326 q^{-57} +428 q^{-58} +171 q^{-59} -134 q^{-60} -243 q^{-61} -112 q^{-62} +51 q^{-63} +109 q^{-64} +59 q^{-65} -12 q^{-66} -41 q^{-67} -33 q^{-68} +6 q^{-69} +22 q^{-70} +2 q^{-71} -3 q^{-72} + q^{-73} -5 q^{-74} - q^{-75} +6 q^{-76} -3 q^{-77} -2 q^{-78} +3 q^{-79} - q^{-80} </math>|J6=<math>q^{57}-3 q^{56}-q^{55}+5 q^{54}+3 q^{53}+3 q^{52}-7 q^{51}-19 q^{49}-19 q^{48}+19 q^{47}+30 q^{46}+47 q^{45}+12 q^{44}+13 q^{43}-85 q^{42}-133 q^{41}-63 q^{40}+19 q^{39}+159 q^{38}+182 q^{37}+268 q^{36}-20 q^{35}-301 q^{34}-413 q^{33}-376 q^{32}-42 q^{31}+282 q^{30}+886 q^{29}+660 q^{28}+134 q^{27}-552 q^{26}-1105 q^{25}-1100 q^{24}-605 q^{23}+996 q^{22}+1609 q^{21}+1657 q^{20}+654 q^{19}-879 q^{18}-2272 q^{17}-2743 q^{16}-659 q^{15}+1182 q^{14}+3059 q^{13}+3147 q^{12}+1515 q^{11}-1657 q^{10}-4476 q^9-3646 q^8-1651 q^7+2325 q^6+4974 q^5+5241 q^4+1485 q^3-3847 q^2-5842 q-5721-965 q^{-1} +4404 q^{-2} +8140 q^{-3} +5767 q^{-4} -771 q^{-5} -5808 q^{-6} -8981 q^{-7} -5297 q^{-8} +1663 q^{-9} +9049 q^{-10} +9327 q^{-11} +3213 q^{-12} -3965 q^{-13} -10546 q^{-14} -9014 q^{-15} -1759 q^{-16} +8461 q^{-17} +11491 q^{-18} +6665 q^{-19} -1652 q^{-20} -10910 q^{-21} -11566 q^{-22} -4648 q^{-23} +7473 q^{-24} +12667 q^{-25} +9159 q^{-26} +208 q^{-27} -10915 q^{-28} -13273 q^{-29} -6739 q^{-30} +6680 q^{-31} +13452 q^{-32} +11007 q^{-33} +1604 q^{-34} -10853 q^{-35} -14578 q^{-36} -8458 q^{-37} +5801 q^{-38} +13912 q^{-39} +12629 q^{-40} +3162 q^{-41} -10203 q^{-42} -15409 q^{-43} -10272 q^{-44} +4031 q^{-45} +13348 q^{-46} +13829 q^{-47} +5360 q^{-48} -8049 q^{-49} -14881 q^{-50} -11817 q^{-51} +978 q^{-52} +10786 q^{-53} +13502 q^{-54} +7563 q^{-55} -4203 q^{-56} -11981 q^{-57} -11729 q^{-58} -2326 q^{-59} +6311 q^{-60} +10646 q^{-61} +8125 q^{-62} -154 q^{-63} -7147 q^{-64} -9081 q^{-65} -3938 q^{-66} +1838 q^{-67} +6070 q^{-68} +6230 q^{-69} +1989 q^{-70} -2639 q^{-71} -5023 q^{-72} -3174 q^{-73} -538 q^{-74} +2163 q^{-75} +3224 q^{-76} +1817 q^{-77} -306 q^{-78} -1843 q^{-79} -1461 q^{-80} -780 q^{-81} +324 q^{-82} +1086 q^{-83} +818 q^{-84} +167 q^{-85} -438 q^{-86} -364 q^{-87} -327 q^{-88} -59 q^{-89} +245 q^{-90} +214 q^{-91} +70 q^{-92} -87 q^{-93} -31 q^{-94} -71 q^{-95} -36 q^{-96} +47 q^{-97} +33 q^{-98} +10 q^{-99} -25 q^{-100} +11 q^{-101} -7 q^{-102} -12 q^{-103} +11 q^{-104} +2 q^{-105} + q^{-106} -6 q^{-107} +3 q^{-108} +2 q^{-109} -3 q^{-110} + q^{-111} </math>|J7=<math>-q^{77}+3 q^{76}+q^{75}-5 q^{74}-3 q^{73}-3 q^{72}+7 q^{71}+5 q^{70}+3 q^{69}+17 q^{68}+7 q^{67}-20 q^{66}-35 q^{65}-50 q^{64}-13 q^{63}+24 q^{62}+39 q^{61}+119 q^{60}+117 q^{59}+50 q^{58}-63 q^{57}-236 q^{56}-265 q^{55}-206 q^{54}-102 q^{53}+231 q^{52}+496 q^{51}+605 q^{50}+507 q^{49}-59 q^{48}-577 q^{47}-990 q^{46}-1207 q^{45}-684 q^{44}+181 q^{43}+1236 q^{42}+2115 q^{41}+1858 q^{40}+879 q^{39}-694 q^{38}-2595 q^{37}-3326 q^{36}-2899 q^{35}-954 q^{34}+2197 q^{33}+4399 q^{32}+5232 q^{31}+3816 q^{30}-72 q^{29}-4116 q^{28}-7274 q^{27}-7578 q^{26}-3711 q^{25}+1847 q^{24}+7752 q^{23}+10998 q^{22}+8840 q^{21}+2904 q^{20}-5758 q^{19}-13028 q^{18}-14181 q^{17}-9460 q^{16}+851 q^{15}+12286 q^{14}+18243 q^{13}+16969 q^{12}+6719 q^{11}-8340 q^{10}-19818 q^9-23784 q^8-15878 q^7+1107 q^6+18085 q^5+28705 q^4+25303 q^3+8356 q^2-12909 q-30600-33687 q^{-1} -19117 q^{-2} +4988 q^{-3} +29521 q^{-4} +39865 q^{-5} +29561 q^{-6} +4823 q^{-7} -25363 q^{-8} -43600 q^{-9} -39112 q^{-10} -15197 q^{-11} +19379 q^{-12} +44807 q^{-13} +46617 q^{-14} +25329 q^{-15} -11993 q^{-16} -44047 q^{-17} -52503 q^{-18} -34421 q^{-19} +4638 q^{-20} +41971 q^{-21} +56398 q^{-22} +42097 q^{-23} +2550 q^{-24} -39239 q^{-25} -59199 q^{-26} -48383 q^{-27} -8627 q^{-28} +36527 q^{-29} +60871 q^{-30} +53343 q^{-31} +13846 q^{-32} -34098 q^{-33} -62288 q^{-34} -57325 q^{-35} -17878 q^{-36} +32218 q^{-37} +63392 q^{-38} +60622 q^{-39} +21301 q^{-40} -30840 q^{-41} -64672 q^{-42} -63577 q^{-43} -24173 q^{-44} +29684 q^{-45} +65879 q^{-46} +66514 q^{-47} +27181 q^{-48} -28413 q^{-49} -67044 q^{-50} -69481 q^{-51} -30530 q^{-52} +26397 q^{-53} +67545 q^{-54} +72462 q^{-55} +34715 q^{-56} -23142 q^{-57} -66976 q^{-58} -75019 q^{-59} -39541 q^{-60} +18181 q^{-61} +64426 q^{-62} +76462 q^{-63} +44850 q^{-64} -11370 q^{-65} -59471 q^{-66} -75993 q^{-67} -49674 q^{-68} +3119 q^{-69} +51715 q^{-70} +72699 q^{-71} +53060 q^{-72} +5813 q^{-73} -41513 q^{-74} -66212 q^{-75} -53989 q^{-76} -14044 q^{-77} +29826 q^{-78} +56667 q^{-79} +51610 q^{-80} +20314 q^{-81} -17896 q^{-82} -44973 q^{-83} -46094 q^{-84} -23700 q^{-85} +7529 q^{-86} +32625 q^{-87} +37962 q^{-88} +23751 q^{-89} +298 q^{-90} -21075 q^{-91} -28709 q^{-92} -21093 q^{-93} -4955 q^{-94} +11823 q^{-95} +19723 q^{-96} +16633 q^{-97} +6638 q^{-98} -5311 q^{-99} -12093 q^{-100} -11767 q^{-101} -6321 q^{-102} +1507 q^{-103} +6674 q^{-104} +7423 q^{-105} +4806 q^{-106} +201 q^{-107} -3153 q^{-108} -4130 q^{-109} -3212 q^{-110} -698 q^{-111} +1305 q^{-112} +2093 q^{-113} +1843 q^{-114} +559 q^{-115} -456 q^{-116} -903 q^{-117} -921 q^{-118} -363 q^{-119} +107 q^{-120} +370 q^{-121} +465 q^{-122} +154 q^{-123} -63 q^{-124} -123 q^{-125} -162 q^{-126} -53 q^{-127} -15 q^{-128} +35 q^{-129} +99 q^{-130} +17 q^{-131} -25 q^{-132} -15 q^{-133} -16 q^{-134} +9 q^{-135} -8 q^{-136} -6 q^{-137} +22 q^{-138} -8 q^{-140} -2 q^{-141} - q^{-142} +6 q^{-143} -3 q^{-144} -2 q^{-145} +3 q^{-146} - q^{-147} </math>}} |
|||
coloured_jones_4 = <math>q^{26}-3 q^{25}-q^{24}+5 q^{23}+3 q^{22}+8 q^{21}-18 q^{20}-18 q^{19}+5 q^{18}+17 q^{17}+59 q^{16}-22 q^{15}-63 q^{14}-47 q^{13}-7 q^{12}+157 q^{11}+49 q^{10}-62 q^9-146 q^8-142 q^7+210 q^6+175 q^5+61 q^4-190 q^3-350 q^2+140 q+250+269 q^{-1} -116 q^{-2} -526 q^{-3} -16 q^{-4} +224 q^{-5} +466 q^{-6} +32 q^{-7} -619 q^{-8} -182 q^{-9} +140 q^{-10} +609 q^{-11} +182 q^{-12} -650 q^{-13} -319 q^{-14} +48 q^{-15} +694 q^{-16} +306 q^{-17} -625 q^{-18} -420 q^{-19} -50 q^{-20} +706 q^{-21} +401 q^{-22} -522 q^{-23} -454 q^{-24} -160 q^{-25} +596 q^{-26} +437 q^{-27} -330 q^{-28} -378 q^{-29} -239 q^{-30} +376 q^{-31} +362 q^{-32} -130 q^{-33} -206 q^{-34} -217 q^{-35} +153 q^{-36} +202 q^{-37} -23 q^{-38} -55 q^{-39} -117 q^{-40} +37 q^{-41} +67 q^{-42} -7 q^{-43} +3 q^{-44} -35 q^{-45} +8 q^{-46} +14 q^{-47} -7 q^{-48} +4 q^{-49} -6 q^{-50} +3 q^{-51} +2 q^{-52} -3 q^{-53} + q^{-54} </math> | |
|||
coloured_jones_5 = <math>-q^{40}+3 q^{39}+q^{38}-5 q^{37}-3 q^{36}-3 q^{35}+2 q^{34}+16 q^{33}+21 q^{32}-7 q^{31}-29 q^{30}-42 q^{29}-27 q^{28}+32 q^{27}+94 q^{26}+87 q^{25}-10 q^{24}-124 q^{23}-178 q^{22}-93 q^{21}+117 q^{20}+292 q^{19}+245 q^{18}-29 q^{17}-338 q^{16}-449 q^{15}-186 q^{14}+317 q^{13}+632 q^{12}+463 q^{11}-135 q^{10}-730 q^9-804 q^8-159 q^7+702 q^6+1080 q^5+579 q^4-520 q^3-1299 q^2-996 q+200+1351 q^{-1} +1442 q^{-2} +207 q^{-3} -1336 q^{-4} -1756 q^{-5} -654 q^{-6} +1152 q^{-7} +2062 q^{-8} +1089 q^{-9} -975 q^{-10} -2224 q^{-11} -1479 q^{-12} +708 q^{-13} +2379 q^{-14} +1833 q^{-15} -513 q^{-16} -2443 q^{-17} -2123 q^{-18} +276 q^{-19} +2526 q^{-20} +2379 q^{-21} -103 q^{-22} -2546 q^{-23} -2596 q^{-24} -107 q^{-25} +2567 q^{-26} +2779 q^{-27} +297 q^{-28} -2494 q^{-29} -2921 q^{-30} -542 q^{-31} +2366 q^{-32} +2993 q^{-33} +786 q^{-34} -2109 q^{-35} -2962 q^{-36} -1048 q^{-37} +1752 q^{-38} +2809 q^{-39} +1252 q^{-40} -1311 q^{-41} -2501 q^{-42} -1369 q^{-43} +837 q^{-44} +2065 q^{-45} +1370 q^{-46} -411 q^{-47} -1566 q^{-48} -1216 q^{-49} +77 q^{-50} +1060 q^{-51} +975 q^{-52} +125 q^{-53} -640 q^{-54} -696 q^{-55} -182 q^{-56} +326 q^{-57} +428 q^{-58} +171 q^{-59} -134 q^{-60} -243 q^{-61} -112 q^{-62} +51 q^{-63} +109 q^{-64} +59 q^{-65} -12 q^{-66} -41 q^{-67} -33 q^{-68} +6 q^{-69} +22 q^{-70} +2 q^{-71} -3 q^{-72} + q^{-73} -5 q^{-74} - q^{-75} +6 q^{-76} -3 q^{-77} -2 q^{-78} +3 q^{-79} - q^{-80} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{57}-3 q^{56}-q^{55}+5 q^{54}+3 q^{53}+3 q^{52}-7 q^{51}-19 q^{49}-19 q^{48}+19 q^{47}+30 q^{46}+47 q^{45}+12 q^{44}+13 q^{43}-85 q^{42}-133 q^{41}-63 q^{40}+19 q^{39}+159 q^{38}+182 q^{37}+268 q^{36}-20 q^{35}-301 q^{34}-413 q^{33}-376 q^{32}-42 q^{31}+282 q^{30}+886 q^{29}+660 q^{28}+134 q^{27}-552 q^{26}-1105 q^{25}-1100 q^{24}-605 q^{23}+996 q^{22}+1609 q^{21}+1657 q^{20}+654 q^{19}-879 q^{18}-2272 q^{17}-2743 q^{16}-659 q^{15}+1182 q^{14}+3059 q^{13}+3147 q^{12}+1515 q^{11}-1657 q^{10}-4476 q^9-3646 q^8-1651 q^7+2325 q^6+4974 q^5+5241 q^4+1485 q^3-3847 q^2-5842 q-5721-965 q^{-1} +4404 q^{-2} +8140 q^{-3} +5767 q^{-4} -771 q^{-5} -5808 q^{-6} -8981 q^{-7} -5297 q^{-8} +1663 q^{-9} +9049 q^{-10} +9327 q^{-11} +3213 q^{-12} -3965 q^{-13} -10546 q^{-14} -9014 q^{-15} -1759 q^{-16} +8461 q^{-17} +11491 q^{-18} +6665 q^{-19} -1652 q^{-20} -10910 q^{-21} -11566 q^{-22} -4648 q^{-23} +7473 q^{-24} +12667 q^{-25} +9159 q^{-26} +208 q^{-27} -10915 q^{-28} -13273 q^{-29} -6739 q^{-30} +6680 q^{-31} +13452 q^{-32} +11007 q^{-33} +1604 q^{-34} -10853 q^{-35} -14578 q^{-36} -8458 q^{-37} +5801 q^{-38} +13912 q^{-39} +12629 q^{-40} +3162 q^{-41} -10203 q^{-42} -15409 q^{-43} -10272 q^{-44} +4031 q^{-45} +13348 q^{-46} +13829 q^{-47} +5360 q^{-48} -8049 q^{-49} -14881 q^{-50} -11817 q^{-51} +978 q^{-52} +10786 q^{-53} +13502 q^{-54} +7563 q^{-55} -4203 q^{-56} -11981 q^{-57} -11729 q^{-58} -2326 q^{-59} +6311 q^{-60} +10646 q^{-61} +8125 q^{-62} -154 q^{-63} -7147 q^{-64} -9081 q^{-65} -3938 q^{-66} +1838 q^{-67} +6070 q^{-68} +6230 q^{-69} +1989 q^{-70} -2639 q^{-71} -5023 q^{-72} -3174 q^{-73} -538 q^{-74} +2163 q^{-75} +3224 q^{-76} +1817 q^{-77} -306 q^{-78} -1843 q^{-79} -1461 q^{-80} -780 q^{-81} +324 q^{-82} +1086 q^{-83} +818 q^{-84} +167 q^{-85} -438 q^{-86} -364 q^{-87} -327 q^{-88} -59 q^{-89} +245 q^{-90} +214 q^{-91} +70 q^{-92} -87 q^{-93} -31 q^{-94} -71 q^{-95} -36 q^{-96} +47 q^{-97} +33 q^{-98} +10 q^{-99} -25 q^{-100} +11 q^{-101} -7 q^{-102} -12 q^{-103} +11 q^{-104} +2 q^{-105} + q^{-106} -6 q^{-107} +3 q^{-108} +2 q^{-109} -3 q^{-110} + q^{-111} </math> | |
|||
coloured_jones_7 = <math>-q^{77}+3 q^{76}+q^{75}-5 q^{74}-3 q^{73}-3 q^{72}+7 q^{71}+5 q^{70}+3 q^{69}+17 q^{68}+7 q^{67}-20 q^{66}-35 q^{65}-50 q^{64}-13 q^{63}+24 q^{62}+39 q^{61}+119 q^{60}+117 q^{59}+50 q^{58}-63 q^{57}-236 q^{56}-265 q^{55}-206 q^{54}-102 q^{53}+231 q^{52}+496 q^{51}+605 q^{50}+507 q^{49}-59 q^{48}-577 q^{47}-990 q^{46}-1207 q^{45}-684 q^{44}+181 q^{43}+1236 q^{42}+2115 q^{41}+1858 q^{40}+879 q^{39}-694 q^{38}-2595 q^{37}-3326 q^{36}-2899 q^{35}-954 q^{34}+2197 q^{33}+4399 q^{32}+5232 q^{31}+3816 q^{30}-72 q^{29}-4116 q^{28}-7274 q^{27}-7578 q^{26}-3711 q^{25}+1847 q^{24}+7752 q^{23}+10998 q^{22}+8840 q^{21}+2904 q^{20}-5758 q^{19}-13028 q^{18}-14181 q^{17}-9460 q^{16}+851 q^{15}+12286 q^{14}+18243 q^{13}+16969 q^{12}+6719 q^{11}-8340 q^{10}-19818 q^9-23784 q^8-15878 q^7+1107 q^6+18085 q^5+28705 q^4+25303 q^3+8356 q^2-12909 q-30600-33687 q^{-1} -19117 q^{-2} +4988 q^{-3} +29521 q^{-4} +39865 q^{-5} +29561 q^{-6} +4823 q^{-7} -25363 q^{-8} -43600 q^{-9} -39112 q^{-10} -15197 q^{-11} +19379 q^{-12} +44807 q^{-13} +46617 q^{-14} +25329 q^{-15} -11993 q^{-16} -44047 q^{-17} -52503 q^{-18} -34421 q^{-19} +4638 q^{-20} +41971 q^{-21} +56398 q^{-22} +42097 q^{-23} +2550 q^{-24} -39239 q^{-25} -59199 q^{-26} -48383 q^{-27} -8627 q^{-28} +36527 q^{-29} +60871 q^{-30} +53343 q^{-31} +13846 q^{-32} -34098 q^{-33} -62288 q^{-34} -57325 q^{-35} -17878 q^{-36} +32218 q^{-37} +63392 q^{-38} +60622 q^{-39} +21301 q^{-40} -30840 q^{-41} -64672 q^{-42} -63577 q^{-43} -24173 q^{-44} +29684 q^{-45} +65879 q^{-46} +66514 q^{-47} +27181 q^{-48} -28413 q^{-49} -67044 q^{-50} -69481 q^{-51} -30530 q^{-52} +26397 q^{-53} +67545 q^{-54} +72462 q^{-55} +34715 q^{-56} -23142 q^{-57} -66976 q^{-58} -75019 q^{-59} -39541 q^{-60} +18181 q^{-61} +64426 q^{-62} +76462 q^{-63} +44850 q^{-64} -11370 q^{-65} -59471 q^{-66} -75993 q^{-67} -49674 q^{-68} +3119 q^{-69} +51715 q^{-70} +72699 q^{-71} +53060 q^{-72} +5813 q^{-73} -41513 q^{-74} -66212 q^{-75} -53989 q^{-76} -14044 q^{-77} +29826 q^{-78} +56667 q^{-79} +51610 q^{-80} +20314 q^{-81} -17896 q^{-82} -44973 q^{-83} -46094 q^{-84} -23700 q^{-85} +7529 q^{-86} +32625 q^{-87} +37962 q^{-88} +23751 q^{-89} +298 q^{-90} -21075 q^{-91} -28709 q^{-92} -21093 q^{-93} -4955 q^{-94} +11823 q^{-95} +19723 q^{-96} +16633 q^{-97} +6638 q^{-98} -5311 q^{-99} -12093 q^{-100} -11767 q^{-101} -6321 q^{-102} +1507 q^{-103} +6674 q^{-104} +7423 q^{-105} +4806 q^{-106} +201 q^{-107} -3153 q^{-108} -4130 q^{-109} -3212 q^{-110} -698 q^{-111} +1305 q^{-112} +2093 q^{-113} +1843 q^{-114} +559 q^{-115} -456 q^{-116} -903 q^{-117} -921 q^{-118} -363 q^{-119} +107 q^{-120} +370 q^{-121} +465 q^{-122} +154 q^{-123} -63 q^{-124} -123 q^{-125} -162 q^{-126} -53 q^{-127} -15 q^{-128} +35 q^{-129} +99 q^{-130} +17 q^{-131} -25 q^{-132} -15 q^{-133} -16 q^{-134} +9 q^{-135} -8 q^{-136} -6 q^{-137} +22 q^{-138} -8 q^{-140} -2 q^{-141} - q^{-142} +6 q^{-143} -3 q^{-144} -2 q^{-145} +3 q^{-146} - q^{-147} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 16]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 7, 13, 8], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 11, 1, 12], X[12, 7, 13, 8], |
|||
X[8, 3, 9, 4], X[4, 9, 5, 10], X[10, 15, 11, 16], X[2, 14, 3, 13]]</nowiki></ |
X[8, 3, 9, 4], X[4, 9, 5, 10], X[10, 15, 11, 16], X[2, 14, 3, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 16]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[8, 16]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 16]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2}]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 14, 12, 4, 16, 2, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[8, 16]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:8_16_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[8, 16]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, 2, -1, -1, 2, -1, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 16]][t]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 8 2 3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 16]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 16]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:8_16_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 16]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, 4, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 16]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 4 8 2 3 |
|||
-9 + t - -- + - + 8 t - 4 t + t |
-9 + t - -- + - + 8 t - 4 t + t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 16]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 16]][z]</nowiki></code></td></tr> |
|||
1 + z + 2 z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + z + 2 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 16], Knot[10, 156], Knot[11, NonAlternating, 15], |
|||
Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]}</nowiki></ |
Knot[11, NonAlternating, 56], Knot[11, NonAlternating, 58]}</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[8, 16]], KnotSignature[Knot[8, 16]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 16]], KnotSignature[Knot[8, 16]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 16]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{35, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 16]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 3 5 6 6 6 2 |
|||
-4 - q + -- - -- + -- - -- + - + 3 q - q |
-4 - q + -- - -- + -- - -- + - + 3 q - q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[8, 16]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 16], Knot[10, 156]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 16]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 -16 -14 -10 -8 2 -4 2 4 6 |
|||
1 - q + q - q + q - q + -- - q + -- + q - q |
1 - q + q - q + q - q + -- - q + -- + q - q |
||
6 2 |
6 2 |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[8, 16]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 16]][a, z]</nowiki></code></td></tr> |
|||
2 a - a - 2 z + 5 a z - 2 a z - z + 4 a z - a z + a z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 2 2 2 4 2 4 2 4 4 4 2 6 |
|||
2 a - a - 2 z + 5 a z - 2 a z - z + 4 a z - a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 16]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 z 3 5 2 2 2 4 2 |
|||
-2 a - a + - + 3 a z + 4 a z + 2 a z + 5 z + 10 a z + 4 a z - |
-2 a - a + - + 3 a z + 4 a z + 2 a z + 5 z + 10 a z + 4 a z - |
||
a |
a |
||
Line 161: | Line 202: | ||
2 6 4 6 7 3 7 |
2 6 4 6 7 3 7 |
||
8 a z + 5 a z + 2 a z + 2 a z</nowiki></ |
8 a z + 5 a z + 2 a z + 2 a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 16]], Vassiliev[3][Knot[8, 16]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 16]], Vassiliev[3][Knot[8, 16]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[8, 16]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 16]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 4 1 2 1 3 2 3 3 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
||
Line 175: | Line 224: | ||
---- + ---- + --- + 2 q t + q t + 2 q t + q t |
---- + ---- + --- + 2 q t + q t + 2 q t + q t |
||
5 3 q |
5 3 q |
||
q t q t</nowiki></ |
q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 16], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 16], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -17 3 2 6 15 7 19 32 8 32 41 |
|||
-8 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + |
-8 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + |
||
16 15 14 13 12 11 10 9 8 7 |
16 15 14 13 12 11 10 9 8 7 |
||
Line 189: | Line 242: | ||
6 7 |
6 7 |
||
3 q + q</nowiki></ |
3 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 16's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X14,6,15,5 X16,11,1,12 X12,7,13,8 X8394 X4,9,5,10 X10,15,11,16 X2,14,3,13 |
Gauss code | 1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3 |
Dowker-Thistlethwaite code | 6 8 14 12 4 16 2 10 |
Conway Notation | [.2.20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
[{3, 10}, {2, 6}, {8, 11}, {9, 7}, {4, 8}, {6, 9}, {5, 3}, {10, 4}, {1, 5}, {11, 2}, {7, 1}] |
[edit Notes on presentations of 8 16]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 16"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X14,6,15,5 X16,11,1,12 X12,7,13,8 X8394 X4,9,5,10 X10,15,11,16 X2,14,3,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -8, 5, -6, 2, -1, 4, -5, 6, -7, 3, -4, 8, -2, 7, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 14 12 4 16 2 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.2.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 10}, {2, 6}, {8, 11}, {9, 7}, {4, 8}, {6, 9}, {5, 3}, {10, 4}, {1, 5}, {11, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 16"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_156, K11n15, K11n56, K11n58,}
Same Jones Polynomial (up to mirroring, ): {10_156,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 16"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_156, K11n15, K11n56, K11n58,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_156,} |
Vassiliev invariants
V2 and V3: | (1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|