8 21: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=8_21}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 8 | |
|||
k = 21 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,8,-2,1,3,-7,-8,2,-5,6,7,-3,-4,5,-6,4/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 8 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = [[10_136]], | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=9.09091%>-6</td ><td width=9.09091%>-5</td ><td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=18.1818%>χ</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math> q^{-1} +2 q^{-2} -4 q^{-3} + q^{-4} +6 q^{-5} -8 q^{-6} +10 q^{-8} -10 q^{-9} - q^{-10} +10 q^{-11} -8 q^{-12} -2 q^{-13} +8 q^{-14} -4 q^{-15} -3 q^{-16} +5 q^{-17} - q^{-18} -2 q^{-19} + q^{-20} </math> | |
|||
coloured_jones_3 = <math>2 q^{-1} -6 q^{-4} +4 q^{-5} +6 q^{-6} -13 q^{-8} + q^{-9} +15 q^{-10} +4 q^{-11} -21 q^{-12} -4 q^{-13} +21 q^{-14} +8 q^{-15} -23 q^{-16} -9 q^{-17} +22 q^{-18} +9 q^{-19} -20 q^{-20} -11 q^{-21} +19 q^{-22} +10 q^{-23} -13 q^{-24} -12 q^{-25} +11 q^{-26} +11 q^{-27} -6 q^{-28} -11 q^{-29} +2 q^{-30} +9 q^{-31} + q^{-32} -7 q^{-33} -2 q^{-34} +4 q^{-35} +2 q^{-36} - q^{-37} -2 q^{-38} + q^{-39} </math> | |
|||
coloured_jones_4 = <math>1+2 q^{-1} -4 q^{-3} -2 q^{-4} -3 q^{-5} +9 q^{-6} +10 q^{-7} -7 q^{-8} -9 q^{-9} -18 q^{-10} +15 q^{-11} +29 q^{-12} - q^{-13} -14 q^{-14} -44 q^{-15} +12 q^{-16} +48 q^{-17} +12 q^{-18} -13 q^{-19} -66 q^{-20} +4 q^{-21} +57 q^{-22} +22 q^{-23} -6 q^{-24} -77 q^{-25} -2 q^{-26} +58 q^{-27} +25 q^{-28} -76 q^{-30} -5 q^{-31} +51 q^{-32} +25 q^{-33} +7 q^{-34} -67 q^{-35} -10 q^{-36} +37 q^{-37} +23 q^{-38} +16 q^{-39} -52 q^{-40} -15 q^{-41} +17 q^{-42} +18 q^{-43} +26 q^{-44} -31 q^{-45} -15 q^{-46} - q^{-47} +7 q^{-48} +27 q^{-49} -10 q^{-50} -8 q^{-51} -9 q^{-52} -4 q^{-53} +17 q^{-54} -5 q^{-57} -6 q^{-58} +5 q^{-59} + q^{-60} +2 q^{-61} - q^{-62} -2 q^{-63} + q^{-64} </math> | |
|||
coloured_jones_5 = <math>2 q+2 q^{-1} -2 q^{-2} -6 q^{-3} -6 q^{-4} +6 q^{-5} +4 q^{-6} +14 q^{-7} +9 q^{-8} -17 q^{-9} -25 q^{-10} -10 q^{-11} +5 q^{-12} +37 q^{-13} +43 q^{-14} -7 q^{-15} -52 q^{-16} -53 q^{-17} -20 q^{-18} +57 q^{-19} +91 q^{-20} +31 q^{-21} -60 q^{-22} -106 q^{-23} -61 q^{-24} +55 q^{-25} +132 q^{-26} +76 q^{-27} -51 q^{-28} -136 q^{-29} -101 q^{-30} +43 q^{-31} +150 q^{-32} +107 q^{-33} -36 q^{-34} -146 q^{-35} -119 q^{-36} +29 q^{-37} +150 q^{-38} +120 q^{-39} -25 q^{-40} -145 q^{-41} -120 q^{-42} +20 q^{-43} +138 q^{-44} +121 q^{-45} -15 q^{-46} -133 q^{-47} -113 q^{-48} +7 q^{-49} +115 q^{-50} +115 q^{-51} +2 q^{-52} -105 q^{-53} -104 q^{-54} -14 q^{-55} +80 q^{-56} +101 q^{-57} +28 q^{-58} -64 q^{-59} -85 q^{-60} -38 q^{-61} +35 q^{-62} +75 q^{-63} +44 q^{-64} -14 q^{-65} -53 q^{-66} -46 q^{-67} -6 q^{-68} +34 q^{-69} +40 q^{-70} +17 q^{-71} -13 q^{-72} -30 q^{-73} -23 q^{-74} -2 q^{-75} +19 q^{-76} +20 q^{-77} +8 q^{-78} -4 q^{-79} -15 q^{-80} -12 q^{-81} +8 q^{-83} +7 q^{-84} +4 q^{-85} -7 q^{-87} -4 q^{-88} + q^{-89} +2 q^{-90} + q^{-91} +2 q^{-92} - q^{-93} -2 q^{-94} + q^{-95} </math> | |
|||
coloured_jones_6 = <math>q^3+2 q^2-2 q^{-1} -4 q^{-2} -8 q^{-3} -3 q^{-4} +9 q^{-5} +16 q^{-6} +11 q^{-7} +6 q^{-8} -5 q^{-9} -38 q^{-10} -34 q^{-11} -9 q^{-12} +34 q^{-13} +49 q^{-14} +54 q^{-15} +35 q^{-16} -65 q^{-17} -104 q^{-18} -86 q^{-19} +5 q^{-20} +75 q^{-21} +147 q^{-22} +146 q^{-23} -36 q^{-24} -165 q^{-25} -211 q^{-26} -90 q^{-27} +46 q^{-28} +229 q^{-29} +295 q^{-30} +52 q^{-31} -173 q^{-32} -320 q^{-33} -209 q^{-34} -30 q^{-35} +263 q^{-36} +414 q^{-37} +151 q^{-38} -140 q^{-39} -377 q^{-40} -292 q^{-41} -109 q^{-42} +258 q^{-43} +473 q^{-44} +215 q^{-45} -100 q^{-46} -390 q^{-47} -324 q^{-48} -160 q^{-49} +239 q^{-50} +488 q^{-51} +241 q^{-52} -75 q^{-53} -382 q^{-54} -326 q^{-55} -182 q^{-56} +221 q^{-57} +477 q^{-58} +247 q^{-59} -58 q^{-60} -360 q^{-61} -313 q^{-62} -192 q^{-63} +193 q^{-64} +443 q^{-65} +247 q^{-66} -30 q^{-67} -315 q^{-68} -288 q^{-69} -208 q^{-70} +140 q^{-71} +379 q^{-72} +245 q^{-73} +23 q^{-74} -234 q^{-75} -244 q^{-76} -231 q^{-77} +56 q^{-78} +281 q^{-79} +228 q^{-80} +86 q^{-81} -120 q^{-82} -170 q^{-83} -235 q^{-84} -35 q^{-85} +152 q^{-86} +174 q^{-87} +121 q^{-88} -7 q^{-89} -65 q^{-90} -190 q^{-91} -86 q^{-92} +29 q^{-93} +84 q^{-94} +98 q^{-95} +54 q^{-96} +30 q^{-97} -100 q^{-98} -72 q^{-99} -35 q^{-100} +4 q^{-101} +33 q^{-102} +46 q^{-103} +64 q^{-104} -22 q^{-105} -22 q^{-106} -32 q^{-107} -21 q^{-108} -14 q^{-109} +7 q^{-110} +43 q^{-111} +4 q^{-112} +8 q^{-113} -6 q^{-114} -8 q^{-115} -17 q^{-116} -10 q^{-117} +13 q^{-118} + q^{-119} +8 q^{-120} +3 q^{-121} +3 q^{-122} -7 q^{-123} -6 q^{-124} +3 q^{-125} -2 q^{-126} +2 q^{-127} + q^{-128} +2 q^{-129} - q^{-130} -2 q^{-131} + q^{-132} </math> | |
|||
coloured_jones_7 = <math>2 q^5+2 q^3-2 q-6-4 q^{-1} -6 q^{-2} +4 q^{-4} +16 q^{-5} +24 q^{-6} +15 q^{-7} -9 q^{-8} -23 q^{-9} -37 q^{-10} -45 q^{-11} -25 q^{-12} +17 q^{-13} +81 q^{-14} +98 q^{-15} +55 q^{-16} +8 q^{-17} -74 q^{-18} -151 q^{-19} -161 q^{-20} -87 q^{-21} +83 q^{-22} +223 q^{-23} +236 q^{-24} +188 q^{-25} +3 q^{-26} -240 q^{-27} -376 q^{-28} -357 q^{-29} -83 q^{-30} +249 q^{-31} +454 q^{-32} +510 q^{-33} +257 q^{-34} -187 q^{-35} -546 q^{-36} -691 q^{-37} -415 q^{-38} +115 q^{-39} +563 q^{-40} +832 q^{-41} +601 q^{-42} +6 q^{-43} -578 q^{-44} -954 q^{-45} -745 q^{-46} -115 q^{-47} +541 q^{-48} +1023 q^{-49} +886 q^{-50} +224 q^{-51} -512 q^{-52} -1072 q^{-53} -964 q^{-54} -303 q^{-55} +451 q^{-56} +1086 q^{-57} +1036 q^{-58} +372 q^{-59} -424 q^{-60} -1093 q^{-61} -1056 q^{-62} -406 q^{-63} +378 q^{-64} +1078 q^{-65} +1082 q^{-66} +436 q^{-67} -359 q^{-68} -1072 q^{-69} -1078 q^{-70} -446 q^{-71} +336 q^{-72} +1051 q^{-73} +1075 q^{-74} +455 q^{-75} -314 q^{-76} -1032 q^{-77} -1068 q^{-78} -461 q^{-79} +299 q^{-80} +1000 q^{-81} +1043 q^{-82} +468 q^{-83} -255 q^{-84} -956 q^{-85} -1032 q^{-86} -482 q^{-87} +220 q^{-88} +897 q^{-89} +985 q^{-90} +499 q^{-91} -139 q^{-92} -812 q^{-93} -954 q^{-94} -527 q^{-95} +70 q^{-96} +711 q^{-97} +879 q^{-98} +546 q^{-99} +40 q^{-100} -572 q^{-101} -813 q^{-102} -564 q^{-103} -136 q^{-104} +432 q^{-105} +694 q^{-106} +552 q^{-107} +245 q^{-108} -268 q^{-109} -572 q^{-110} -524 q^{-111} -311 q^{-112} +113 q^{-113} +415 q^{-114} +454 q^{-115} +361 q^{-116} +24 q^{-117} -269 q^{-118} -352 q^{-119} -353 q^{-120} -123 q^{-121} +117 q^{-122} +236 q^{-123} +315 q^{-124} +173 q^{-125} -7 q^{-126} -119 q^{-127} -232 q^{-128} -178 q^{-129} -65 q^{-130} +15 q^{-131} +146 q^{-132} +147 q^{-133} +92 q^{-134} +45 q^{-135} -69 q^{-136} -87 q^{-137} -78 q^{-138} -78 q^{-139} +3 q^{-140} +44 q^{-141} +56 q^{-142} +69 q^{-143} +14 q^{-144} - q^{-145} -12 q^{-146} -54 q^{-147} -29 q^{-148} -15 q^{-149} +2 q^{-150} +29 q^{-151} +12 q^{-152} +15 q^{-153} +17 q^{-154} -8 q^{-155} -11 q^{-156} -14 q^{-157} -12 q^{-158} +6 q^{-159} - q^{-160} +3 q^{-161} +10 q^{-162} +3 q^{-163} +2 q^{-164} -4 q^{-165} -6 q^{-166} + q^{-167} -2 q^{-169} +2 q^{-170} + q^{-171} +2 q^{-172} - q^{-173} -2 q^{-174} + q^{-175} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[13, 16, 14, 1], |
|||
X[9, 14, 10, 15], X[15, 10, 16, 11], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -12, 2, 14, -6, 16, 10]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -2, 1, 1, -2, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 21]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:8_21_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 21]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 3, 4, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 21]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 4 2 |
|||
-5 - t + - + 4 t - t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 21]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 |
|||
1 - z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 21], Knot[10, 136]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 21]], KnotSignature[Knot[8, 21]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{15, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 21]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 2 2 3 3 2 2 |
|||
q - -- + -- - -- + -- - -- + - |
|||
6 5 4 3 2 q |
|||
q q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 21]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 21]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -22 2 -12 -10 -8 2 -4 2 |
|||
q - --- - q - q + q + -- + q + -- |
|||
14 6 2 |
|||
q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 21]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 4 2 6 2 4 4 |
|||
3 a - 3 a + a + 2 a z - 3 a z + a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 21]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 7 2 2 4 2 |
|||
-3 a - 3 a - a + 2 a z + 4 a z + 2 a z + 3 a z + 5 a z - |
|||
8 2 3 3 5 3 7 3 4 4 6 4 8 4 |
|||
2 a z - a z - 6 a z - 5 a z - 2 a z - a z + a z + |
|||
3 5 5 5 7 5 4 6 6 6 |
|||
a z + 3 a z + 2 a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 21]], Vassiliev[3][Knot[8, 21]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 21]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 1 1 1 1 1 2 1 |
|||
q + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
|||
q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
|||
q t q t q t q t q t q t q t |
|||
1 2 1 1 |
|||
----- + ----- + ---- + ---- |
|||
7 2 5 2 5 3 |
|||
q t q t q t q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 21], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 2 -18 5 3 4 8 2 8 10 -10 |
|||
q - --- - q + --- - --- - --- + --- - --- - --- + --- - q - |
|||
19 17 16 15 14 13 12 11 |
|||
q q q q q q q q |
|||
10 10 8 6 -4 4 2 1 |
|||
-- + -- - -- + -- + q - -- + -- + - |
|||
9 8 6 5 3 2 q |
|||
q q q q q q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 21's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X12,6,13,5 X13,16,14,1 X9,14,10,15 X15,10,16,11 X6,12,7,11 X7283 |
Gauss code | -1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4 |
Dowker-Thistlethwaite code | 4 8 -12 2 14 -6 16 10 |
Conway Notation | [21,21,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
[{9, 3}, {2, 7}, {6, 8}, {7, 9}, {4, 1}, {3, 6}, {5, 2}, {8, 4}, {1, 5}] |
[edit Notes on presentations of 8 21]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 21"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X12,6,13,5 X13,16,14,1 X9,14,10,15 X15,10,16,11 X6,12,7,11 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 8, -2, 1, 3, -7, -8, 2, -5, 6, 7, -3, -4, 5, -6, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 14 -6 16 10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[21,21,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 3}, {2, 7}, {6, 8}, {7, 9}, {4, 1}, {3, 6}, {5, 2}, {8, 4}, {1, 5}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 21"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 15, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_136,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 21"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_136,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 21. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|