10 103: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_103}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 103 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,5,-6,2,-1,4,-8,7,-5,6,-9,3,-7,8,-4,10,-2,9,-3/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[10_40]], | |
|||
same_jones = [[10_40]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>4</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^7-3 q^6+q^5+8 q^4-16 q^3+3 q^2+32 q-44-7 q^{-1} +78 q^{-2} -69 q^{-3} -35 q^{-4} +123 q^{-5} -75 q^{-6} -67 q^{-7} +141 q^{-8} -61 q^{-9} -81 q^{-10} +122 q^{-11} -30 q^{-12} -72 q^{-13} +75 q^{-14} -3 q^{-15} -46 q^{-16} +30 q^{-17} +6 q^{-18} -17 q^{-19} +7 q^{-20} +2 q^{-21} -3 q^{-22} + q^{-23} </math> | |
|||
coloured_jones_3 = <math>-q^{15}+3 q^{14}-q^{13}-3 q^{12}-2 q^{11}+10 q^{10}-20 q^8+2 q^7+40 q^6-76 q^4-17 q^3+130 q^2+58 q-190-129 q^{-1} +232 q^{-2} +247 q^{-3} -268 q^{-4} -362 q^{-5} +249 q^{-6} +505 q^{-7} -224 q^{-8} -603 q^{-9} +147 q^{-10} +705 q^{-11} -90 q^{-12} -742 q^{-13} - q^{-14} +769 q^{-15} +65 q^{-16} -739 q^{-17} -145 q^{-18} +688 q^{-19} +212 q^{-20} -602 q^{-21} -262 q^{-22} +482 q^{-23} +299 q^{-24} -355 q^{-25} -301 q^{-26} +225 q^{-27} +273 q^{-28} -115 q^{-29} -218 q^{-30} +35 q^{-31} +155 q^{-32} +4 q^{-33} -91 q^{-34} -20 q^{-35} +49 q^{-36} +15 q^{-37} -22 q^{-38} -8 q^{-39} +10 q^{-40} +2 q^{-41} -3 q^{-42} -2 q^{-43} +3 q^{-44} - q^{-45} </math> | |
|||
coloured_jones_4 = <math>q^{26}-3 q^{25}+q^{24}+3 q^{23}-3 q^{22}+8 q^{21}-13 q^{20}+4 q^{19}+10 q^{18}-22 q^{17}+23 q^{16}-31 q^{15}+37 q^{14}+51 q^{13}-87 q^{12}-11 q^{11}-118 q^{10}+139 q^9+266 q^8-89 q^7-145 q^6-530 q^5+104 q^4+745 q^3+349 q^2-49 q-1367-581 q^{-1} +1017 q^{-2} +1331 q^{-3} +904 q^{-4} -2048 q^{-5} -1988 q^{-6} +391 q^{-7} +2211 q^{-8} +2680 q^{-9} -1864 q^{-10} -3361 q^{-11} -1064 q^{-12} +2315 q^{-13} +4453 q^{-14} -909 q^{-15} -4017 q^{-16} -2574 q^{-17} +1732 q^{-18} +5532 q^{-19} +193 q^{-20} -3945 q^{-21} -3591 q^{-22} +902 q^{-23} +5841 q^{-24} +1109 q^{-25} -3391 q^{-26} -4083 q^{-27} -19 q^{-28} +5474 q^{-29} +1887 q^{-30} -2375 q^{-31} -4093 q^{-32} -1071 q^{-33} +4375 q^{-34} +2426 q^{-35} -908 q^{-36} -3412 q^{-37} -1987 q^{-38} +2599 q^{-39} +2318 q^{-40} +541 q^{-41} -2028 q^{-42} -2182 q^{-43} +794 q^{-44} +1428 q^{-45} +1195 q^{-46} -569 q^{-47} -1493 q^{-48} -198 q^{-49} +378 q^{-50} +908 q^{-51} +181 q^{-52} -592 q^{-53} -278 q^{-54} -124 q^{-55} +354 q^{-56} +216 q^{-57} -121 q^{-58} -77 q^{-59} -126 q^{-60} +74 q^{-61} +73 q^{-62} -20 q^{-63} +5 q^{-64} -39 q^{-65} +12 q^{-66} +14 q^{-67} -9 q^{-68} +5 q^{-69} -6 q^{-70} +3 q^{-71} +2 q^{-72} -3 q^{-73} + q^{-74} </math> | |
|||
coloured_jones_5 = <math>-q^{40}+3 q^{39}-q^{38}-3 q^{37}+3 q^{36}-3 q^{35}-5 q^{34}+9 q^{33}+6 q^{32}-6 q^{31}+11 q^{30}-5 q^{29}-31 q^{28}-12 q^{27}+8 q^{26}+27 q^{25}+72 q^{24}+56 q^{23}-65 q^{22}-174 q^{21}-161 q^{20}-q^{19}+298 q^{18}+459 q^{17}+219 q^{16}-385 q^{15}-899 q^{14}-761 q^{13}+192 q^{12}+1400 q^{11}+1756 q^{10}+564 q^9-1671 q^8-3127 q^7-2139 q^6+1184 q^5+4518 q^4+4662 q^3+529 q^2-5289 q-7834-3775 q^{-1} +4744 q^{-2} +10896 q^{-3} +8472 q^{-4} -2221 q^{-5} -13154 q^{-6} -14015 q^{-7} -2144 q^{-8} +13593 q^{-9} +19434 q^{-10} +8337 q^{-11} -12153 q^{-12} -23999 q^{-13} -15026 q^{-14} +8685 q^{-15} +26814 q^{-16} +21869 q^{-17} -4042 q^{-18} -28061 q^{-19} -27448 q^{-20} -1273 q^{-21} +27591 q^{-22} +31996 q^{-23} +6247 q^{-24} -26227 q^{-25} -34797 q^{-26} -10731 q^{-27} +24132 q^{-28} +36701 q^{-29} +14253 q^{-30} -21994 q^{-31} -37381 q^{-32} -17209 q^{-33} +19591 q^{-34} +37727 q^{-35} +19581 q^{-36} -17184 q^{-37} -37280 q^{-38} -21810 q^{-39} +14232 q^{-40} +36397 q^{-41} +23911 q^{-42} -10754 q^{-43} -34576 q^{-44} -25775 q^{-45} +6436 q^{-46} +31610 q^{-47} +27167 q^{-48} -1485 q^{-49} -27347 q^{-50} -27508 q^{-51} -3652 q^{-52} +21653 q^{-53} +26442 q^{-54} +8385 q^{-55} -15075 q^{-56} -23661 q^{-57} -11847 q^{-58} +8232 q^{-59} +19270 q^{-60} +13533 q^{-61} -2099 q^{-62} -13857 q^{-63} -13171 q^{-64} -2526 q^{-65} +8308 q^{-66} +11063 q^{-67} +5126 q^{-68} -3476 q^{-69} -7946 q^{-70} -5816 q^{-71} +105 q^{-72} +4713 q^{-73} +4988 q^{-74} +1705 q^{-75} -2036 q^{-76} -3525 q^{-77} -2172 q^{-78} +373 q^{-79} +1989 q^{-80} +1817 q^{-81} +431 q^{-82} -877 q^{-83} -1195 q^{-84} -581 q^{-85} +241 q^{-86} +640 q^{-87} +446 q^{-88} +5 q^{-89} -261 q^{-90} -266 q^{-91} -77 q^{-92} +109 q^{-93} +125 q^{-94} +36 q^{-95} -21 q^{-96} -41 q^{-97} -37 q^{-98} +12 q^{-99} +25 q^{-100} -2 q^{-101} -3 q^{-102} +3 q^{-103} -6 q^{-104} - q^{-105} +6 q^{-106} -3 q^{-107} -2 q^{-108} +3 q^{-109} - q^{-110} </math> | |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 103]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[18, 6, 19, 5], X[20, 13, 1, 14], X[16, 7, 17, 8], |
|||
X[10, 3, 11, 4], X[4, 11, 5, 12], X[14, 9, 15, 10], X[8, 15, 9, 16], |
|||
X[12, 19, 13, 20], X[2, 18, 3, 17]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 103]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, |
|||
-2, 9, -3]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 103]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 18, 16, 14, 4, 20, 8, 2, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 103]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -2, 1, 3, -2, -2, 3, -2, -2, 3}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 103]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 103]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_103_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 103]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 103]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 17 2 3 |
|||
-21 + -- - -- + -- + 17 t - 8 t + 2 t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 103]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 3 z + 4 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 40], Knot[10, 103]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 103]], KnotSignature[Knot[10, 103]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{75, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 103]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 3 6 9 12 13 11 10 2 |
|||
-6 - q + -- - -- + -- - -- + -- - -- + -- + 3 q - q |
|||
7 6 5 4 3 2 q |
|||
q q q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 40], Knot[10, 103]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 103]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -24 -22 -20 -18 2 3 -12 -8 4 -4 |
|||
-1 - q + q - q - q + --- - --- + q + q + -- - q + |
|||
16 14 6 |
|||
q q q |
|||
3 2 4 6 |
|||
-- - q + q - q |
|||
2 |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 103]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 2 2 2 4 2 6 2 4 2 4 |
|||
-1 + 3 a - a - 2 z + 4 a z + 3 a z - 2 a z - z + 3 a z + |
|||
4 4 6 4 2 6 4 6 |
|||
3 a z - a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 103]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 z 3 5 7 2 2 2 |
|||
-1 - 3 a + a + - + a z - 2 a z - 6 a z - 4 a z + 3 z + 2 a z - |
|||
a |
|||
3 |
|||
4 2 6 2 8 2 2 z 3 3 3 5 3 |
|||
8 a z - 6 a z + a z - ---- - 2 a z + 9 a z + 21 a z + |
|||
a |
|||
5 |
|||
7 3 9 3 4 4 4 6 4 8 4 z |
|||
10 a z - 2 a z - 6 z + 25 a z + 13 a z - 6 a z + -- - |
|||
a |
|||
5 3 5 5 5 7 5 9 5 6 2 6 |
|||
5 a z - 9 a z - 16 a z - 12 a z + a z + 3 z - 5 a z - |
|||
4 6 6 6 8 6 7 3 7 5 7 |
|||
23 a z - 12 a z + 3 a z + 4 a z + 2 a z + 3 a z + |
|||
7 7 2 8 4 8 6 8 3 9 5 9 |
|||
5 a z + 4 a z + 9 a z + 5 a z + 2 a z + 2 a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 103]], Vassiliev[3][Knot[10, 103]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, -4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 103]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5 6 1 2 1 4 2 5 4 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
|||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
|||
q q t q t q t q t q t q t q t |
|||
7 5 6 7 5 6 2 t 2 |
|||
----- + ----- + ----- + ----- + ---- + ---- + --- + 4 q t + q t + |
|||
9 3 7 3 7 2 5 2 5 3 q |
|||
q t q t q t q t q t q t |
|||
3 2 5 3 |
|||
2 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 103], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 3 2 7 17 6 30 46 3 75 |
|||
-44 + q - --- + --- + --- - --- + --- + --- - --- - --- + --- - |
|||
22 21 20 19 18 17 16 15 14 |
|||
q q q q q q q q q |
|||
72 30 122 81 61 141 67 75 123 35 69 78 7 |
|||
--- - --- + --- - --- - -- + --- - -- - -- + --- - -- - -- + -- - - + |
|||
13 12 11 10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q q q q |
|||
2 3 4 5 6 7 |
|||
32 q + 3 q - 16 q + 8 q + q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:05, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 103's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X18,6,19,5 X20,13,1,14 X16,7,17,8 X10,3,11,4 X4,11,5,12 X14,9,15,10 X8,15,9,16 X12,19,13,20 X2,18,3,17 |
Gauss code | 1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3 |
Dowker-Thistlethwaite code | 6 10 18 16 14 4 20 8 2 12 |
Conway Notation | [30:2:2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{3, 12}, {2, 9}, {4, 10}, {9, 11}, {5, 3}, {8, 4}, {10, 7}, {6, 8}, {7, 13}, {12, 6}, {1, 5}, {13, 2}, {11, 1}] |
[edit Notes on presentations of 10 103]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 103"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X18,6,19,5 X20,13,1,14 X16,7,17,8 X10,3,11,4 X4,11,5,12 X14,9,15,10 X8,15,9,16 X12,19,13,20 X2,18,3,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 5, -6, 2, -1, 4, -8, 7, -5, 6, -9, 3, -7, 8, -4, 10, -2, 9, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 18 16 14 4 20 8 2 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[30:2:2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 12}, {2, 9}, {4, 10}, {9, 11}, {5, 3}, {8, 4}, {10, 7}, {6, 8}, {7, 13}, {12, 6}, {1, 5}, {13, 2}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 103"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 75, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_40,}
Same Jones Polynomial (up to mirroring, ): {10_40,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 103"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_40,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_40,} |
Vassiliev invariants
V2 and V3: | (3, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 103. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|