The Alexander-Conway Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 4: Line 4:


<!--$$?Alexander$$-->
<!--$$?Alexander$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{HelpAndAbout1|n=2|s=Alexander}}
Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].
{{HelpAndAbout2|n=3|s=Alexander}}
The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
{{HelpAndAbout3}}
<!--END-->
<!--END-->


<!--$$?Conway$$-->
<!--$$?Conway$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{Help1|n=4|s=Conway}}
Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.
{{Help2}}
<!--END-->
<!--END-->


Line 14: Line 24:


<!--$$alex = Alexander[Knot[8, 18]][t]$$-->
<!--$$alex = Alexander[Knot[8, 18]][t]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=5}}
alex = Alexander[Knot[8, 18]][t]
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
2 t
t</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]$$-->
<!--$$Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=6}}
Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
2 t
t</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Line 22: Line 48:


<!--$$Abs[alex /. t -> -1]$$-->
<!--$$Abs[alex /. t -> -1]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=7}}
Abs[alex /. t -> -1]
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki>45</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Line 27: Line 58:


<!--$$KnotDet[Knot[8, 18]]$$-->
<!--$$KnotDet[Knot[8, 18]]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=8}}
KnotDet[Knot[8, 18]]
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki>45</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Line 32: Line 68:


<!--$$Coefficient[Conway[Knot[8, 18]][z], z^2]$$-->
<!--$$Coefficient[Conway[Knot[8, 18]][z], z^2]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=9}}
Coefficient[Conway[Knot[8, 18]][z], z^2]
{{InOut2|n=9}}<pre style="border: 0px; padding: 0em"><nowiki>1</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Line 37: Line 78:


<!--$$Vassiliev[2][Knot[8, 18]]$$-->
<!--$$Vassiliev[2][Knot[8, 18]]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=10}}
Vassiliev[2][Knot[8, 18]]
{{InOut2|n=10}}<pre style="border: 0px; padding: 0em"><nowiki>0</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Line 42: Line 88:


<!--$${K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};$$-->
<!--$${K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{In1|n=11}}
{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};
{{In2}}
<!--END-->
<!--END-->


<!--$$Alexander[K1] == Alexander[K2]$$-->
<!--$$Alexander[K1] == Alexander[K2]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=12}}
Alexander[K1] == Alexander[K2]
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki>True</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Alexander[K1, 2][t]$$-->
<!--$$Alexander[K1, 2][t]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=13}}
Alexander[K1, 2][t]
{{InOut2|n=13}}<pre style="border: 0px; padding: 0em"><nowiki>{1}</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


<!--$$Alexander[K2, 2][t]$$-->
<!--$$Alexander[K2, 2][t]$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=14}}
Alexander[K2, 2][t]
{{InOut2|n=14}}<pre style="border: 0px; padding: 0em"><nowiki>{3, 1 + t}</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->


Finally, the Alexander polynomial attains <!--$Length[Union[Alexander[#]& /@ AllKnots[]]]$--><!--END--> values on the <!--$Length[AllKnots[]]$--><!--END--> knots known to <code>KnotTheory`</code>:
Finally, the Alexander polynomial attains <!--$Length[Union[Alexander[#]& /@ AllKnots[]]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->551<!--END--> values on the <!--$Length[AllKnots[]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->802<!--END--> knots known to <code>KnotTheory`</code>:


<!--$$Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}$$-->
<!--$$Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}$$-->
<!--The lines to END were generated by WikiSplice: do not edit; see manual.-->
{{InOut1|n=15}}
Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}
{{InOut2|n=15}}<pre style="border: 0px; padding: 0em"><nowiki>{551, 802}</nowiki></pre>
{{InOut3}}
<!--END-->
<!--END-->

Revision as of 10:04, 25 August 2005


(For In[1] see Setup)

In[2]:= ?Alexander

Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].

In[3]:= Alexander::about

The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.

In[4]:= ?Conway

Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.

8 18.gif

The Alexander polynomial and the Conway polynomial of a knot always satisfy . Let us verify this relation for the knot 8_18:

In[5]:=

alex = Alexander[Knot[8, 18]][t]

Out[5]=
      -3   5    10             2    3
13 - t   + -- - -- - 10 t + 5 t  - t
            2   t
           t
In[6]:=

Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]

Out[6]=
      -3   5    10             2    3
13 - t   + -- - -- - 10 t + 5 t  - t
            2   t
           t

The determinant of a knot is . Hence for 8_18 it is

In[7]:=

Abs[alex /. t -> -1]

Out[7]=
45

Alternatively (see The Determinant and the Signature):

In[8]:=

KnotDet[Knot[8, 18]]

Out[8]=
45

, the (standardly normalized) type 2 Vassiliev invariant of a knot is the coefficient of in its Conway polynomial:

In[9]:=

Coefficient[Conway[Knot[8, 18]][z], z^2]

Out[9]=
1

Alternatively (see Finite Type (Vassiliev) Invariants),

In[10]:=

Vassiliev[2][Knot[8, 18]]

Out[10]=
0

Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair K11a99 and K11a277. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring while the second Alexander ideal of the second knot is the smaller ideal generated by and by :

In[11]:=

{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};

In[12]:=

Alexander[K1] == Alexander[K2]

Out[12]=
True
In[13]:=

Alexander[K1, 2][t]

Out[13]=
{1}
In[14]:=

Alexander[K2, 2][t]

Out[14]=
{3, 1 + t}

Finally, the Alexander polynomial attains 551 values on the 802 knots known to KnotTheory`:

In[15]:=

Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}

Out[15]=
{551, 802}