9 43: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=43|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-9,5,-3,4,-2,-7,8,9,-5,-6,7,-8,6/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=43|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-9,5,-3,4,-2,-7,8,9,-5,-6,7,-8,6/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
<td width=16.6667%><table cellpadding=0 cellspacing=0>
Line 45: Line 38:
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 118: Line 110:
q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 19:15, 28 August 2005

9 42.gif

9_42

9 44.gif

9_44

9 43.gif Visit 9 43's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 43's page at Knotilus!

Visit 9 43's page at the original Knot Atlas!

9 43 Quick Notes


9 43 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X10,6,11,5 X8394 X2,9,3,10 X14,8,15,7 X15,1,16,18 X11,17,12,16 X17,13,18,12 X6,14,7,13
Gauss code 1, -4, 3, -1, 2, -9, 5, -3, 4, -2, -7, 8, 9, -5, -6, 7, -8, 6
Dowker-Thistlethwaite code 4 8 10 14 2 -16 6 -18 -12
Conway Notation [211,3,2-]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [1][-10]
Hyperbolic Volume 5.90409
A-Polynomial See Data:9 43/A-polynomial

[edit Notes for 9 43's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 43's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 13, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 43. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-1012345χ
15       1-1
13      1 1
11     11 0
9    11  0
7   11   0
5  11    0
3 12     1
1        0
-11       1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 43]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 43]]
Out[3]=  
PD[X[4, 2, 5, 1], X[10, 6, 11, 5], X[8, 3, 9, 4], X[2, 9, 3, 10], 
 X[14, 8, 15, 7], X[15, 1, 16, 18], X[11, 17, 12, 16], 

X[17, 13, 18, 12], X[6, 14, 7, 13]]
In[4]:=
GaussCode[Knot[9, 43]]
Out[4]=  
GaussCode[1, -4, 3, -1, 2, -9, 5, -3, 4, -2, -7, 8, 9, -5, -6, 7, -8, 6]
In[5]:=
BR[Knot[9, 43]]
Out[5]=  
BR[4, {1, 1, 1, 2, 1, 1, -3, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 43]][t]
Out[6]=  
     -3   3    2            2    3

1 - t + -- - - - 2 t + 3 t - t

          2   t
t
In[7]:=
Conway[Knot[9, 43]][z]
Out[7]=  
     2      4    6
1 + z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 43]}
In[9]:=
{KnotDet[Knot[9, 43]], KnotSignature[Knot[9, 43]]}
Out[9]=  
{13, 4}
In[10]:=
J=Jones[Knot[9, 43]][q]
Out[10]=  
           2      3      4      5      6    7
1 - q + 2 q  - 2 q  + 2 q  - 2 q  + 2 q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 43], Knot[11, NonAlternating, 12]}
In[12]:=
A2Invariant[Knot[9, 43]][q]
Out[12]=  
     2    4    6      12    18    20    26
1 + q  + q  + q  - 2 q   + q   + q   - q
In[13]:=
Kauffman[Knot[9, 43]][a, z]
Out[13]=  
                                   2      2       2      2      3
 -8   3    4    3    z    z    2 z    9 z    14 z    7 z    2 z

-a - -- - -- - -- + -- + -- + ---- + ---- + ----- + ---- - ---- +

       6    4    2    9    7     8      6      4       2      7
      a    a    a    a    a     a      a      a       a      a

  3      3      4       4      4    5      5      5      6      6
 z    3 z    8 z    13 z    5 z    z    3 z    4 z    2 z    3 z
 -- + ---- - ---- - ----- - ---- + -- - ---- - ---- + ---- + ---- + 
  5     3      6      4       2     7     5      3      6      4
 a     a      a      a       a     a     a      a      a      a

  6    7    7
 z    z    z
 -- + -- + --
  2    5    3
a a a
In[14]:=
{Vassiliev[2][Knot[9, 43]], Vassiliev[3][Knot[9, 43]]}
Out[14]=  
{0, 2}
In[15]:=
Kh[Knot[9, 43]][q, t]
Out[15]=  
                    3
  3    5    1     q     5      7      7  2    9  2    9  3    11  3

2 q + q + ---- + -- + q t + q t + q t + q t + q t + q t +

              2   t
           q t

  11  4    13  4    15  5
q t + q t + q t