The Determinant and the Signature: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 58: | Line 58: | ||
<!--$$Select[AllKnots[], Abs[KnotDet[#]] == 1 &]$$--> |
<!--$$Select[AllKnots[], Abs[KnotDet[#]] == 1 &]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 6 | |
|||
in = <nowiki>Select[AllKnots[], Abs[KnotDet[#]] == 1 &]</nowiki> | |
|||
out= <nowiki>{Knot[0, 1], Knot[10, 124], Knot[10, 153], |
|||
Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42], |
|||
Knot[11, NonAlternating, 49], Knot[11, NonAlternating, 116]}</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Revision as of 08:14, 2 September 2005
(For In[1] see Setup)
|
|
Thus, for example, the knots 5_1 and 10_132 have the same determinant (and even the same Alexander and Jones polynomials), but different signatures:
In[3]:=
|
KnotDet /@ {Knot[5, 1], Knot[10, 132]}
|
Out[3]=
|
{5, 5}
|
In[4]:=
|
{
Equal @@ (Jones[#][q]& /@ {Knot[5, 1], Knot[10, 132]}),
Equal @@ (Alexander[#][t]& /@ {Knot[5, 1], Knot[10, 132]})
}
|
Out[4]=
|
{True, True}
|
In[5]:=
|
KnotSignature /@ {Knot[5, 1], Knot[10, 132]}
|
Out[5]=
|
{-4, 0}
|
In August 2005 somebody emailed Dror a question about knot colouring, which amounted to "find the first knot (other than the unknot) whose determinant is . So on September 2nd Dror typed
In[6]:=
|
Select[AllKnots[], Abs[KnotDet[#]] == 1 &]
|
Out[6]=
|
{Knot[0, 1], Knot[10, 124], Knot[10, 153],
Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42],
Knot[11, NonAlternating, 49], Knot[11, NonAlternating, 116]}
|
So the "first" knots that are not -colourable for any are 10_124 and 10_153.