The Multivariable Alexander Polynomial: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 23: | Line 23: | ||
{{InOut| |
{{InOut| |
||
n = 4 | |
n = 4 | |
||
in = <nowiki>mva = MultivariableAlexander[Link[8, Alternating, 21]] /. { |
in = <nowiki>mva = MultivariableAlexander[Link[8, Alternating, 21]][t] /. { |
||
t[1] -> t1, t[2] -> t2, t[3] -> t3, t[4] -> t4 |
t[1] -> t1, t[2] -> t2, t[3] -> t3, t[4] -> t4 |
||
}</nowiki> | |
}</nowiki> | |
||
out= <nowiki>- |
out= <nowiki>-t1 - t2 + t1 t2 - t3 + t1 t3 + 2 t2 t3 - t1 t2 t3 - t4 + 2 t1 t4 + |
||
t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4</nowiki>}} |
|||
#1[1] #1[2] #1[4] + #1[3] #1[4] - #1[1] #1[3] #1[4] - |
|||
#1[2] #1[3] #1[4] & </nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 40: | Line 36: | ||
n = 5 | |
n = 5 | |
||
in = <nowiki>mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})</nowiki> | |
in = <nowiki>mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})</nowiki> | |
||
out= <nowiki> |
out= <nowiki>-(t1 t2) + t2 t3 + t1 t4 - t3 t4</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 48: | Line 44: | ||
n = 6 | |
n = 6 | |
||
in = <nowiki>mva - (mva /. {t1->t2, t2->t1})</nowiki> | |
in = <nowiki>mva - (mva /. {t1->t2, t2->t1})</nowiki> | |
||
out= <nowiki> |
out= <nowiki>-(t1 t3) + t2 t3 + t1 t4 - t2 t4</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Revision as of 14:46, 5 September 2005
(For In[1] see Setup)
|
|
L8a21 |
The link L8a21 is symmetric under cyclic permutations of its components but not under interchanging two adjacent components. It is amusing to see how this is reflected in its multivariable Alexander polynomial:
In[4]:=
|
mva = MultivariableAlexander[Link[8, Alternating, 21]][t] /. {
t[1] -> t1, t[2] -> t2, t[3] -> t3, t[4] -> t4
}
|
Out[4]=
|
-t1 - t2 + t1 t2 - t3 + t1 t3 + 2 t2 t3 - t1 t2 t3 - t4 + 2 t1 t4 +
t2 t4 - t1 t2 t4 + t3 t4 - t1 t3 t4 - t2 t3 t4
|
In[5]:=
|
mva - (mva /. {t1->t2, t2->t3, t3->t4, t4->t1})
|
Out[5]=
|
-(t1 t2) + t2 t3 + t1 t4 - t3 t4
|
In[6]:=
|
mva - (mva /. {t1->t2, t2->t1})
|
Out[6]=
|
-(t1 t3) + t2 t3 + t1 t4 - t2 t4
|
There are 11 links with up to 11 crossings whose multivariable Alexander polynomial is . Here they are:
In[7]:=
|
Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]
|
Out[7]=
|
{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32],
Link[10, NonAlternating, 36], Link[10, NonAlternating, 107],
Link[11, NonAlternating, 244], Link[11, NonAlternating, 247],
Link[11, NonAlternating, 334], Link[11, NonAlternating, 381],
Link[11, NonAlternating, 396], Link[11, NonAlternating, 404],
Link[11, NonAlternating, 406]}
|