7 4: Difference between revisions
| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| Line 16: | Line 16: | ||
| {{Knot Presentations}} | {{Knot Presentations}} | ||
| <center><table border=1 cellpadding=10><tr align=center valign=top> | |||
| <td> | |||
| [[Braid Representatives|Minimum Braid Representative]]: | |||
| <table cellspacing=0 cellpadding=0 border=0> | |||
| <tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> | |||
| </table> | |||
| [[Invariants from Braid Theory|Length]] is 9, width is 4. | |||
| [[Invariants from Braid Theory|Braid index]] is 4. | |||
| </td> | |||
| <td> | |||
| [[Lightly Documented Features|A Morse Link Presentation]]: | |||
| [[Image:{{PAGENAME}}_ML.gif]] | |||
| </td> | |||
| </tr></table></center> | |||
| {{3D Invariants}} | {{3D Invariants}} | ||
| {{4D Invariants}} | {{4D Invariants}} | ||
| {{Polynomial Invariants}} | {{Polynomial Invariants}} | ||
| === "Similar" Knots (within the Atlas) === | |||
| Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: | |||
| {[[9_2]], ...} | |||
| Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):  | |||
| {...} | |||
| {{Vassiliev Invariants}} | {{Vassiliev Invariants}} | ||
| Line 39: | Line 70: | ||
| <tr align=center><td>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | <tr align=center><td>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | ||
| </table>}} | </table>}} | ||
| {{Display Coloured Jones|J2=<math>q^{23}-q^{22}-q^{21}+3 q^{20}-q^{19}-4 q^{18}+5 q^{17}-q^{16}-7 q^{15}+7 q^{14}+q^{13}-8 q^{12}+7 q^{11}+3 q^{10}-9 q^9+6 q^8+2 q^7-6 q^6+4 q^5+q^4-2 q^3+q^2</math>|J3=<math>-q^{45}+q^{44}+q^{43}-3 q^{41}+3 q^{39}+3 q^{38}-5 q^{37}-3 q^{36}+4 q^{35}+7 q^{34}-5 q^{33}-7 q^{32}+3 q^{31}+9 q^{30}-3 q^{29}-11 q^{28}+2 q^{27}+10 q^{26}+q^{25}-13 q^{24}-q^{23}+11 q^{22}+6 q^{21}-15 q^{20}-3 q^{19}+11 q^{18}+7 q^{17}-13 q^{16}-4 q^{15}+9 q^{14}+5 q^{13}-8 q^{12}-2 q^{11}+6 q^{10}+q^9-4 q^8+2 q^6+q^5-2 q^4+q^3</math>|J4=<math>q^{74}-q^{73}-q^{72}+4 q^{69}-q^{68}-2 q^{67}-2 q^{66}-4 q^{65}+8 q^{64}+2 q^{63}-4 q^{61}-11 q^{60}+9 q^{59}+4 q^{58}+6 q^{57}-2 q^{56}-18 q^{55}+7 q^{54}+2 q^{53}+12 q^{52}+4 q^{51}-22 q^{50}+6 q^{49}-5 q^{48}+15 q^{47}+10 q^{46}-23 q^{45}+5 q^{44}-12 q^{43}+15 q^{42}+17 q^{41}-21 q^{40}+2 q^{39}-19 q^{38}+17 q^{37}+23 q^{36}-19 q^{35}-q^{34}-25 q^{33}+18 q^{32}+26 q^{31}-14 q^{30}-3 q^{29}-28 q^{28}+16 q^{27}+26 q^{26}-11 q^{25}-25 q^{23}+10 q^{22}+20 q^{21}-9 q^{20}+4 q^{19}-16 q^{18}+6 q^{17}+10 q^{16}-8 q^{15}+5 q^{14}-7 q^{13}+4 q^{12}+4 q^{11}-5 q^{10}+2 q^9-2 q^8+2 q^7+q^6-2 q^5+q^4</math>|J5=<math>-q^{110}+q^{109}+q^{108}-q^{105}-3 q^{104}+3 q^{102}+2 q^{101}+2 q^{100}+q^{99}-6 q^{98}-5 q^{97}+3 q^{95}+7 q^{94}+7 q^{93}-4 q^{92}-9 q^{91}-7 q^{90}-3 q^{89}+8 q^{88}+14 q^{87}+4 q^{86}-6 q^{85}-11 q^{84}-13 q^{83}+q^{82}+15 q^{81}+12 q^{80}+2 q^{79}-6 q^{78}-18 q^{77}-9 q^{76}+7 q^{75}+15 q^{74}+11 q^{73}+3 q^{72}-14 q^{71}-15 q^{70}-7 q^{69}+11 q^{68}+16 q^{67}+12 q^{66}-4 q^{65}-19 q^{64}-19 q^{63}+4 q^{62}+20 q^{61}+20 q^{60}+4 q^{59}-21 q^{58}-30 q^{57}-2 q^{56}+25 q^{55}+25 q^{54}+12 q^{53}-25 q^{52}-40 q^{51}-7 q^{50}+29 q^{49}+33 q^{48}+19 q^{47}-29 q^{46}-49 q^{45}-11 q^{44}+30 q^{43}+39 q^{42}+24 q^{41}-26 q^{40}-50 q^{39}-18 q^{38}+24 q^{37}+38 q^{36}+25 q^{35}-16 q^{34}-40 q^{33}-20 q^{32}+12 q^{31}+27 q^{30}+21 q^{29}-7 q^{28}-21 q^{27}-14 q^{26}+3 q^{25}+13 q^{24}+11 q^{23}-3 q^{22}-7 q^{21}-5 q^{20}+2 q^{19}+2 q^{18}+4 q^{17}-2 q^{16}-3 q^{15}+2 q^{14}+2 q^{13}-2 q^{12}+q^{11}-2 q^9+2 q^8+q^7-2 q^6+q^5</math>|J6=<math>q^{153}-q^{152}-q^{151}+q^{148}+4 q^{146}-q^{145}-3 q^{144}-2 q^{143}-2 q^{142}-2 q^{140}+10 q^{139}+3 q^{138}-2 q^{136}-5 q^{135}-6 q^{134}-12 q^{133}+12 q^{132}+7 q^{131}+8 q^{130}+5 q^{129}+q^{128}-9 q^{127}-26 q^{126}+4 q^{125}+12 q^{123}+13 q^{122}+18 q^{121}-32 q^{119}-3 q^{118}-17 q^{117}+3 q^{116}+8 q^{115}+33 q^{114}+17 q^{113}-23 q^{112}+3 q^{111}-29 q^{110}-14 q^{109}-12 q^{108}+35 q^{107}+27 q^{106}-9 q^{105}+25 q^{104}-25 q^{103}-26 q^{102}-38 q^{101}+23 q^{100}+23 q^{99}+q^{98}+52 q^{97}-7 q^{96}-25 q^{95}-61 q^{94}+5 q^{93}+8 q^{92}+2 q^{91}+74 q^{90}+17 q^{89}-16 q^{88}-76 q^{87}-11 q^{86}-9 q^{85}-2 q^{84}+88 q^{83}+38 q^{82}-4 q^{81}-86 q^{80}-23 q^{79}-25 q^{78}-4 q^{77}+98 q^{76}+56 q^{75}+2 q^{74}-96 q^{73}-34 q^{72}-40 q^{71}+2 q^{70}+110 q^{69}+69 q^{68}+4 q^{67}-108 q^{66}-46 q^{65}-50 q^{64}+9 q^{63}+122 q^{62}+81 q^{61}+9 q^{60}-115 q^{59}-58 q^{58}-60 q^{57}+7 q^{56}+124 q^{55}+91 q^{54}+19 q^{53}-105 q^{52}-61 q^{51}-68 q^{50}-8 q^{49}+106 q^{48}+91 q^{47}+31 q^{46}-78 q^{45}-46 q^{44}-64 q^{43}-25 q^{42}+74 q^{41}+70 q^{40}+33 q^{39}-47 q^{38}-22 q^{37}-44 q^{36}-29 q^{35}+43 q^{34}+38 q^{33}+21 q^{32}-26 q^{31}-2 q^{30}-20 q^{29}-20 q^{28}+22 q^{27}+14 q^{26}+7 q^{25}-14 q^{24}+6 q^{23}-5 q^{22}-9 q^{21}+9 q^{20}+2 q^{19}+q^{18}-7 q^{17}+6 q^{16}-4 q^{14}+4 q^{13}-q^{12}-2 q^{10}+2 q^9+q^8-2 q^7+q^6</math>|J7=<math>-q^{203}+q^{202}+q^{201}-q^{198}-q^{196}-3 q^{195}+q^{194}+3 q^{193}+2 q^{192}+3 q^{191}-q^{190}-9 q^{187}-4 q^{186}+2 q^{184}+8 q^{183}+3 q^{182}+7 q^{181}+8 q^{180}-10 q^{179}-10 q^{178}-10 q^{177}-10 q^{176}+5 q^{175}+2 q^{174}+13 q^{173}+24 q^{172}+3 q^{171}-q^{170}-12 q^{169}-25 q^{168}-10 q^{167}-15 q^{166}+3 q^{165}+31 q^{164}+17 q^{163}+22 q^{162}+9 q^{161}-22 q^{160}-15 q^{159}-36 q^{158}-24 q^{157}+14 q^{156}+9 q^{155}+34 q^{154}+37 q^{153}+5 q^{152}+7 q^{151}-36 q^{150}-45 q^{149}-12 q^{148}-23 q^{147}+14 q^{146}+44 q^{145}+29 q^{144}+47 q^{143}-6 q^{142}-37 q^{141}-22 q^{140}-61 q^{139}-26 q^{138}+18 q^{137}+25 q^{136}+78 q^{135}+40 q^{134}-3 q^{133}-5 q^{132}-80 q^{131}-65 q^{130}-25 q^{129}-10 q^{128}+86 q^{127}+79 q^{126}+41 q^{125}+34 q^{124}-77 q^{123}-88 q^{122}-69 q^{121}-58 q^{120}+70 q^{119}+99 q^{118}+81 q^{117}+79 q^{116}-55 q^{115}-97 q^{114}-101 q^{113}-104 q^{112}+41 q^{111}+105 q^{110}+112 q^{109}+120 q^{108}-29 q^{107}-96 q^{106}-124 q^{105}-144 q^{104}+15 q^{103}+108 q^{102}+136 q^{101}+150 q^{100}-10 q^{99}-99 q^{98}-143 q^{97}-174 q^{96}+q^{95}+118 q^{94}+157 q^{93}+169 q^{92}-2 q^{91}-110 q^{90}-165 q^{89}-194 q^{88}-3 q^{87}+137 q^{86}+179 q^{85}+185 q^{84}+3 q^{83}-129 q^{82}-188 q^{81}-212 q^{80}-7 q^{79}+151 q^{78}+199 q^{77}+204 q^{76}+14 q^{75}-133 q^{74}-202 q^{73}-229 q^{72}-30 q^{71}+138 q^{70}+204 q^{69}+220 q^{68}+40 q^{67}-107 q^{66}-187 q^{65}-233 q^{64}-60 q^{63}+93 q^{62}+173 q^{61}+213 q^{60}+67 q^{59}-59 q^{58}-142 q^{57}-200 q^{56}-72 q^{55}+39 q^{54}+113 q^{53}+167 q^{52}+69 q^{51}-21 q^{50}-83 q^{49}-138 q^{48}-52 q^{47}+10 q^{46}+53 q^{45}+103 q^{44}+43 q^{43}-5 q^{42}-37 q^{41}-75 q^{40}-21 q^{39}+4 q^{38}+18 q^{37}+48 q^{36}+13 q^{35}-q^{34}-10 q^{33}-34 q^{32}-3 q^{31}+5 q^{30}+4 q^{29}+15 q^{28}-q^{27}+q^{26}+2 q^{25}-14 q^{24}+2 q^{23}+4 q^{22}+2 q^{20}-4 q^{19}+2 q^{18}+4 q^{17}-6 q^{16}+2 q^{15}+2 q^{14}-q^{13}-2 q^{11}+2 q^{10}+q^9-2 q^8+q^7</math>}} | |||
| {{Computer Talk Header}} | {{Computer Talk Header}} | ||
| Line 46: | Line 80: | ||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
| </tr> | </tr> | ||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August  | <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[7, 4]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[7, 4]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[12, 6, 13, 5], X[14, 8, 1, 7], X[8, 14, 9, 13],  | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[12, 6, 13, 5], X[14, 8, 1, 7], X[8, 14, 9, 13],  | |||
|   X[2, 12, 3, 11], X[10, 4, 11, 3], X[4, 10, 5, 9]]</nowiki></pre></td></tr> |   X[2, 12, 3, 11], X[10, 4, 11, 3], X[4, 10, 5, 9]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 4]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[7, 4]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -5, 6, -7, 2, -1, 3, -4, 7, -6, 5, -2, 4, -3]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[7, 4]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 12, 14, 4, 2, 8]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[7, 4]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 2, -1, 2, 2, 3, -2, 3}]</nowiki></pre></td></tr> | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 2, -1, 2, 2, 3, -2, 3}]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 4]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[7, 4]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[7, 4]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:7_4_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[7, 4]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 1, 2, {3, 4}, 1}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[7, 4]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     4 | |||
| -7 + - + 4 t | -7 + - + 4 t | ||
|      t</nowiki></pre></td></tr> |      t</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 4]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[7, 4]][z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2 | |||
| 1 + 4 z</nowiki></pre></td></tr> | 1 + 4 z</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 4], Knot[9, 2]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, 2}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[7, 4]], KnotSignature[Knot[7, 4]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, 2}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[7, 4]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      3      4      5      6    7    8 | |||
| q - 2 q  + 3 q  - 2 q  + 3 q  - 2 q  + q  - q</nowiki></pre></td></tr> | q - 2 q  + 3 q  - 2 q  + 3 q  - 2 q  + q  - q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[7, 4]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[7, 4]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[7, 4]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2    4    8    10      12    14    16    20    24    26 | |||
| q  - q  + q  + q   + 2 q   + q   + q   - q   - q   - q</nowiki></pre></td></tr> | q  - q  + q  + q   + 2 q   + q   + q   - q   - q   - q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 4]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[7, 4]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>             2      2    2 | |||
|   -8   2    z    2 z    z | |||
| -a   + -- + -- + ---- + -- | |||
|         4    6     4     2 | |||
|        a    a     a     a</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[7, 4]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                           2      2      2    2      3      3      3 | |||
|   -8   2    4 z   4 z   2 z    3 z    4 z    z    4 z    8 z    2 z |   -8   2    4 z   4 z   2 z    3 z    4 z    z    4 z    8 z    2 z | ||
| -a   + -- + --- + --- + ---- - ---- - ---- + -- - ---- - ---- - ---- +  | -a   + -- + --- + --- + ---- - ---- - ---- + -- - ---- - ---- - ---- +  | ||
| Line 89: | Line 152: | ||
|     3      8      4     9     7      5     8    6 |     3      8      4     9     7      5     8    6 | ||
|    a      a      a     a     a      a     a    a</nowiki></pre></td></tr> |    a      a      a     a     a      a     a    a</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 4]], Vassiliev[3][Knot[7, 4]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre | <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[7, 4]], Vassiliev[3][Knot[7, 4]]}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 8}</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     3      3      5  2      7  2    7  3    9  3      9  4    11  4 | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[7, 4]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     3      3      5  2      7  2    7  3    9  3      9  4    11  4 | |||
| q + q  + 2 q  t + q  t  + 2 q  t  + q  t  + q  t  + 2 q  t  + q   t  +  | q + q  + 2 q  t + q  t  + 2 q  t  + q  t  + q  t  + 2 q  t  + q   t  +  | ||
|      13  5    13  6    17  7 |      13  5    13  6    17  7 | ||
|   2 q   t  + q   t  + q   t</nowiki></pre></td></tr> |   2 q   t  + q   t  + q   t</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[7, 4], 2][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2      3    4      5      6      7      8      9      10      11 | |||
| q  - 2 q  + q  + 4 q  - 6 q  + 2 q  + 6 q  - 9 q  + 3 q   + 7 q   -  | |||
|      12    13      14      15    16      17      18    19      20 | |||
|   8 q   + q   + 7 q   - 7 q   - q   + 5 q   - 4 q   - q   + 3 q   -  | |||
|    21    22    23 | |||
|   q   - q   + q</nowiki></pre></td></tr> | |||
| </table> | </table> | ||
| See/edit the [[Rolfsen_Splice_Template]]. | |||
|  [[Category:Knot Page]] |  [[Category:Knot Page]] | ||
Revision as of 18:05, 29 August 2005
|  |  | 
|   | Visit 7 4's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 7 4's page at Knotilus! Visit 7 4's page at the original Knot Atlas! Simplest version of Endless knot symbol. | 
|   a knot seen at the Castle of Kornik [3] |   A 7-4 knot reduced from TakaraMusubi with 9 crossings [4] |   TakaraMusubi knot seen in Japanese symbols, or Kolam in South India [5] | |
|   A laser cut by Tom Longtin [6] | |||
| 
 | 
Knot presentations
| Planar diagram presentation | X6271 X12,6,13,5 X14,8,1,7 X8,14,9,13 X2,12,3,11 X10,4,11,3 X4,10,5,9 | 
| Gauss code | 1, -5, 6, -7, 2, -1, 3, -4, 7, -6, 5, -2, 4, -3 | 
| Dowker-Thistlethwaite code | 6 10 12 14 4 2 8 | 
| Conway Notation | [313] | 
| 
 Length is 9, width is 4. Braid index is 4. | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | |
| 3,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["7 4"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 15, 2 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {9_2, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
| V2 and V3: | (4, 8) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 7 4. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.



















