In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[7, 5]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 14, 8, 1],
X[13, 6, 14, 7], X[11, 8, 12, 9], X[9, 2, 10, 3]] |
In[3]:= | GaussCode[Knot[7, 5]] |
Out[3]= | GaussCode[-1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4] |
In[4]:= | DTCode[Knot[7, 5]] |
Out[4]= | DTCode[4, 10, 12, 14, 2, 8, 6] |
In[5]:= | br = BR[Knot[7, 5]] |
Out[5]= | BR[3, {-1, -1, -1, -1, -2, 1, -2, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {3, 8} |
In[7]:= | BraidIndex[Knot[7, 5]] |
Out[7]= | 3 |
In[8]:= | Show[DrawMorseLink[Knot[7, 5]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[7, 5]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 2, 2, 2, 4, 1} |
In[10]:= | alex = Alexander[Knot[7, 5]][t] |
Out[10]= | 2 4 2
5 + -- - - - 4 t + 2 t
2 t
t |
In[11]:= | Conway[Knot[7, 5]][z] |
Out[11]= | 2 4
1 + 4 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[7, 5], Knot[10, 130]} |
In[13]:= | {KnotDet[Knot[7, 5]], KnotSignature[Knot[7, 5]]} |
Out[13]= | {17, -4} |
In[14]:= | Jones[Knot[7, 5]][q] |
Out[14]= | -9 2 3 3 3 3 -3 -2
-q + -- - -- + -- - -- + -- - q + q
8 7 6 5 4
q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[7, 5]} |
In[16]:= | A2Invariant[Knot[7, 5]][q] |
Out[16]= | -28 -22 -18 -16 -14 -12 2 -6
-q - q - q + q + q + q + --- + q
10
q |
In[17]:= | HOMFLYPT[Knot[7, 5]][a, z] |
Out[17]= | 4 8 4 2 6 2 8 2 4 4 6 4
2 a - a + 3 a z + 2 a z - a z + a z + a z |
In[18]:= | Kauffman[Knot[7, 5]][a, z] |
Out[18]= | 4 8 5 7 9 11 4 2 8 2 10 2
2 a - a - a z + a z + a z - a z - 3 a z + a z - 2 a z -
5 3 7 3 9 3 11 3 4 4 6 4 10 4
a z - 4 a z - 2 a z + a z + a z - a z + 2 a z +
5 5 7 5 9 5 6 6 8 6
a z + 3 a z + 2 a z + a z + a z |
In[19]:= | {Vassiliev[2][Knot[7, 5]], Vassiliev[3][Knot[7, 5]]} |
Out[19]= | {4, -8} |
In[20]:= | Kh[Knot[7, 5]][q, t] |
Out[20]= | -5 -3 1 1 1 2 1 1
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
19 7 17 6 15 6 15 5 13 5 13 4
q t q t q t q t q t q t
2 2 1 1 2 1
------ + ------ + ----- + ----- + ----- + ----
11 4 11 3 9 3 9 2 7 2 5
q t q t q t q t q t q t |
In[21]:= | ColouredJones[Knot[7, 5], 2][q] |
Out[21]= | -25 2 5 6 2 11 9 4 14 10 5
q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- +
24 22 21 20 19 18 17 16 15 14
q q q q q q q q q q
13 7 5 9 3 3 4 -5 -4
--- - --- - --- + --- - -- - -- + -- - q + q
13 12 11 10 9 8 7
q q q q q q q |