The Alexander-Conway Polynomial: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
<!--$$?Alexander$$--> |
<!--$$?Alexander$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n= |
{{HelpAndAbout1|n=1|s=Alexander}} |
||
Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t]. |
Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t]. |
||
{{HelpAndAbout2|n= |
{{HelpAndAbout2|n=2|s=Alexander}} |
||
The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. |
The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. |
||
{{HelpAndAbout3}} |
{{HelpAndAbout3}} |
||
Line 13: | Line 13: | ||
<!--$$?Conway$$--> |
<!--$$?Conway$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n= |
{{Help1|n=3|s=Conway}} |
||
Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z. |
Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z. |
||
{{Help2}} |
{{Help2}} |
||
Line 24: | Line 24: | ||
<!--$$alex = Alexander[Knot[8, 18]][t]$$--> |
<!--$$alex = Alexander[Knot[8, 18]][t]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=4}} |
||
alex = Alexander[Knot[8, 18]][t] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3 |
||
13 - t + -- - -- - 10 t + 5 t - t |
13 - t + -- - -- - 10 t + 5 t - t |
||
2 t |
2 t |
||
Line 35: | Line 35: | ||
<!--$$Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]$$--> |
<!--$$Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=5}} |
||
Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> -3 5 10 2 3 |
||
13 - t + -- - -- - 10 t + 5 t - t |
13 - t + -- - -- - 10 t + 5 t - t |
||
2 t |
2 t |
||
Line 48: | Line 48: | ||
<!--$$Abs[alex /. t -> -1]$$--> |
<!--$$Abs[alex /. t -> -1]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=6}} |
||
Abs[alex /. t -> -1] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Abs[alex /. t -> -1]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>45</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Line 58: | Line 58: | ||
<!--$$KnotDet[Knot[8, 18]]$$--> |
<!--$$KnotDet[Knot[8, 18]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=7}} |
||
KnotDet[Knot[8, 18]] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotDet[Knot[8, 18]]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki>45</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Line 68: | Line 68: | ||
<!--$$Coefficient[Conway[Knot[8, 18]][z], z^2]$$--> |
<!--$$Coefficient[Conway[Knot[8, 18]][z], z^2]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=8}} |
||
Coefficient[Conway[Knot[8, 18]][z], z^2] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Coefficient[Conway[Knot[8, 18]][z], z^2]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=8}}<pre style="border: 0px; padding: 0em"><nowiki>1</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Line 78: | Line 78: | ||
<!--$$Vassiliev[2][Knot[8, 18]]$$--> |
<!--$$Vassiliev[2][Knot[8, 18]]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=9}} |
||
Vassiliev[2][Knot[8, 18]] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Vassiliev[2][Knot[8, 18]]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=9}}<pre style="border: 0px; padding: 0em"><nowiki>0</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Line 88: | Line 88: | ||
<!--$${K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};$$--> |
<!--$${K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{In1|n= |
{{In1|n=10}} |
||
{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]}; |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};</nowiki></pre> |
||
{{In2}} |
{{In2}} |
||
<!--END--> |
<!--END--> |
||
<!--$$Alexander[K1] == Alexander[K2]$$--> |
<!--$$Alexander[K1] == Alexander[K2]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=11}} |
||
Alexander[K1] == Alexander[K2] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[K1] == Alexander[K2]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=11}}<pre style="border: 0px; padding: 0em"><nowiki>True</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$Alexander[K1, 2][t]$$--> |
<!--$$Alexander[K1, 2][t]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=12}} |
||
Alexander[K1, 2][t] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[K1, 2][t]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=12}}<pre style="border: 0px; padding: 0em"><nowiki>{1}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$Alexander[K2, 2][t]$$--> |
<!--$$Alexander[K2, 2][t]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=13}} |
||
Alexander[K2, 2][t] |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Alexander[K2, 2][t]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=13}}<pre style="border: 0px; padding: 0em"><nowiki>{3, 1 + t}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
Finally, the Alexander polynomial attains <!--$Length[Union[Alexander[#]& /@ AllKnots[]]]$--><!-- |
Finally, the Alexander polynomial attains <!--$Length[Union[Alexander[#]& /@ AllKnots[]]]$--><!--Robot Land, no human edits to "END"-->551<!--END--> values on the <!--$Length[AllKnots[]]$--><!--Robot Land, no human edits to "END"-->802<!--END--> knots known to <code>KnotTheory`</code>: |
||
<!--$$Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}$$--> |
<!--$$Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=14}} |
||
Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]} |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=14}}<pre style="border: 0px; padding: 0em"><nowiki>{551, 802}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
Revision as of 19:43, 27 August 2005
(For In[1] see Setup)
In[1]:= ?Alexander
Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t]. |
In[2]:= Alexander::about
The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. |
In[3]:= ?Conway
Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z. |
[[Image:8_18.{{{2}}}|180px|link=8_18]] 8_18 |
The Alexander polynomial and the Conway polynomial of a knot always satisfy . Let us verify this relation for the knot 8_18:
In[4]:= |
alex = Alexander[Knot[8, 18]][t] |
Out[4]= | -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t |
In[5]:= |
Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]] |
Out[5]= | -3 5 10 2 3 13 - t + -- - -- - 10 t + 5 t - t 2 t t |
The determinant of a knot is . Hence for 8_18 it is
In[6]:= |
Abs[alex /. t -> -1] |
Out[6]= | 45 |
Alternatively (see The Determinant and the Signature):
In[7]:= |
KnotDet[Knot[8, 18]] |
Out[7]= | 45 |
, the (standardly normalized) type 2 Vassiliev invariant of a knot is the coefficient of in its Conway polynomial:
In[8]:= |
Coefficient[Conway[Knot[8, 18]][z], z^2] |
Out[8]= | 1 |
Alternatively (see Finite Type (Vassiliev) Invariants),
In[9]:= |
Vassiliev[2][Knot[8, 18]] |
Out[9]= | 0 |
Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair K11a99 and K11a277. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring while the second Alexander ideal of the second knot is the smaller ideal generated by and by :
In[10]:= |
{K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]}; |
In[11]:= |
Alexander[K1] == Alexander[K2] |
Out[11]= | True |
In[12]:= |
Alexander[K1, 2][t] |
Out[12]= | {1} |
In[13]:= |
Alexander[K2, 2][t] |
Out[13]= | {3, 1 + t} |
Finally, the Alexander polynomial attains 551 values on the 802 knots known to KnotTheory`
:
In[14]:= |
Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]} |
Out[14]= | {551, 802} |