9 14: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- -->
<!-- --> <!--
<!-- -->
-->
{{Rolfsen Knot Page|
<!-- -->
n = 9 |
<!-- -->
k = 14 |
<!-- provide an anchor so we can return to the top of the page -->
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,9,-7,8,-6,3,-4,2,-5,6,-8,7,-9,5/goTop.html |
<span id="top"></span>
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=9|k=14|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,9,-7,8,-6,3,-4,2,-5,6,-8,7,-9,5/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
Line 27: Line 12:
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 5 |
[[Invariants from Braid Theory|Length]] is 10, width is 5.
braid_index = 5 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 5.
same_jones = [[K11n53]], |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{[[K11n53]], ...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 73: Line 37:
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{18}-2 q^{17}-q^{16}+6 q^{15}-5 q^{14}-6 q^{13}+15 q^{12}-5 q^{11}-16 q^{10}+23 q^9-2 q^8-27 q^7+28 q^6+4 q^5-34 q^4+27 q^3+9 q^2-33 q+21+9 q^{-1} -23 q^{-2} +13 q^{-3} +5 q^{-4} -11 q^{-5} +6 q^{-6} + q^{-7} -3 q^{-8} + q^{-9} </math> |

coloured_jones_3 = <math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+5 q^{32}-4 q^{31}-9 q^{30}+3 q^{29}+17 q^{28}-q^{27}-23 q^{26}-7 q^{25}+30 q^{24}+16 q^{23}-34 q^{22}-27 q^{21}+32 q^{20}+41 q^{19}-30 q^{18}-49 q^{17}+21 q^{16}+60 q^{15}-14 q^{14}-65 q^{13}+3 q^{12}+70 q^{11}+8 q^{10}-73 q^9-18 q^8+72 q^7+29 q^6-71 q^5-33 q^4+61 q^3+41 q^2-58 q-34+42 q^{-1} +34 q^{-2} -37 q^{-3} -20 q^{-4} +23 q^{-5} +17 q^{-6} -21 q^{-7} -5 q^{-8} +12 q^{-9} +4 q^{-10} -11 q^{-11} + q^{-12} +6 q^{-13} - q^{-14} -3 q^{-15} - q^{-16} +3 q^{-17} - q^{-18} </math> |
{{Display Coloured Jones|J2=<math>q^{18}-2 q^{17}-q^{16}+6 q^{15}-5 q^{14}-6 q^{13}+15 q^{12}-5 q^{11}-16 q^{10}+23 q^9-2 q^8-27 q^7+28 q^6+4 q^5-34 q^4+27 q^3+9 q^2-33 q+21+9 q^{-1} -23 q^{-2} +13 q^{-3} +5 q^{-4} -11 q^{-5} +6 q^{-6} + q^{-7} -3 q^{-8} + q^{-9} </math>|J3=<math>q^{36}-2 q^{35}-q^{34}+2 q^{33}+5 q^{32}-4 q^{31}-9 q^{30}+3 q^{29}+17 q^{28}-q^{27}-23 q^{26}-7 q^{25}+30 q^{24}+16 q^{23}-34 q^{22}-27 q^{21}+32 q^{20}+41 q^{19}-30 q^{18}-49 q^{17}+21 q^{16}+60 q^{15}-14 q^{14}-65 q^{13}+3 q^{12}+70 q^{11}+8 q^{10}-73 q^9-18 q^8+72 q^7+29 q^6-71 q^5-33 q^4+61 q^3+41 q^2-58 q-34+42 q^{-1} +34 q^{-2} -37 q^{-3} -20 q^{-4} +23 q^{-5} +17 q^{-6} -21 q^{-7} -5 q^{-8} +12 q^{-9} +4 q^{-10} -11 q^{-11} + q^{-12} +6 q^{-13} - q^{-14} -3 q^{-15} - q^{-16} +3 q^{-17} - q^{-18} </math>|J4=<math>q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+6 q^{55}-8 q^{54}-7 q^{53}+2 q^{52}+3 q^{51}+26 q^{50}-12 q^{49}-23 q^{48}-11 q^{47}-5 q^{46}+63 q^{45}+3 q^{44}-29 q^{43}-38 q^{42}-46 q^{41}+93 q^{40}+35 q^{39}-50 q^{37}-112 q^{36}+86 q^{35}+48 q^{34}+58 q^{33}-18 q^{32}-166 q^{31}+49 q^{30}+14 q^{29}+107 q^{28}+52 q^{27}-177 q^{26}+12 q^{25}-58 q^{24}+124 q^{23}+128 q^{22}-152 q^{21}-8 q^{20}-140 q^{19}+115 q^{18}+193 q^{17}-109 q^{16}-20 q^{15}-215 q^{14}+98 q^{13}+243 q^{12}-59 q^{11}-26 q^{10}-273 q^9+67 q^8+266 q^7-4 q^6-15 q^5-295 q^4+22 q^3+240 q^2+34 q+23-256 q^{-1} -20 q^{-2} +164 q^{-3} +35 q^{-4} +61 q^{-5} -170 q^{-6} -30 q^{-7} +80 q^{-8} +3 q^{-9} +69 q^{-10} -82 q^{-11} -14 q^{-12} +28 q^{-13} -23 q^{-14} +48 q^{-15} -29 q^{-16} +2 q^{-17} +8 q^{-18} -25 q^{-19} +23 q^{-20} -8 q^{-21} +5 q^{-22} +3 q^{-23} -12 q^{-24} +6 q^{-25} -2 q^{-26} +3 q^{-27} + q^{-28} -3 q^{-29} + q^{-30} </math>|J5=<math>q^{90}-2 q^{89}-q^{88}+2 q^{87}+q^{86}+2 q^{85}+2 q^{84}-6 q^{83}-9 q^{82}+2 q^{81}+7 q^{80}+11 q^{79}+12 q^{78}-9 q^{77}-29 q^{76}-20 q^{75}+6 q^{74}+33 q^{73}+46 q^{72}+15 q^{71}-46 q^{70}-69 q^{69}-41 q^{68}+30 q^{67}+93 q^{66}+84 q^{65}-4 q^{64}-97 q^{63}-122 q^{62}-49 q^{61}+81 q^{60}+149 q^{59}+99 q^{58}-31 q^{57}-145 q^{56}-150 q^{55}-34 q^{54}+112 q^{53}+169 q^{52}+98 q^{51}-36 q^{50}-152 q^{49}-159 q^{48}-51 q^{47}+101 q^{46}+175 q^{45}+145 q^{44}+6 q^{43}-174 q^{42}-234 q^{41}-108 q^{40}+115 q^{39}+290 q^{38}+248 q^{37}-39 q^{36}-334 q^{35}-360 q^{34}-65 q^{33}+337 q^{32}+481 q^{31}+175 q^{30}-335 q^{29}-575 q^{28}-283 q^{27}+314 q^{26}+661 q^{25}+386 q^{24}-294 q^{23}-738 q^{22}-477 q^{21}+273 q^{20}+802 q^{19}+568 q^{18}-251 q^{17}-869 q^{16}-644 q^{15}+225 q^{14}+906 q^{13}+737 q^{12}-183 q^{11}-951 q^{10}-787 q^9+120 q^8+922 q^7+866 q^6-38 q^5-899 q^4-868 q^3-49 q^2+772 q+880+147 q^{-1} -674 q^{-2} -794 q^{-3} -212 q^{-4} +491 q^{-5} +716 q^{-6} +257 q^{-7} -368 q^{-8} -560 q^{-9} -260 q^{-10} +207 q^{-11} +448 q^{-12} +235 q^{-13} -130 q^{-14} -291 q^{-15} -192 q^{-16} +34 q^{-17} +207 q^{-18} +146 q^{-19} -18 q^{-20} -106 q^{-21} -96 q^{-22} -22 q^{-23} +63 q^{-24} +67 q^{-25} +14 q^{-26} -25 q^{-27} -35 q^{-28} -18 q^{-29} +6 q^{-30} +20 q^{-31} +16 q^{-32} -4 q^{-33} -10 q^{-34} -2 q^{-35} -7 q^{-36} +3 q^{-37} +8 q^{-38} -3 q^{-40} +2 q^{-41} -3 q^{-42} - q^{-43} +3 q^{-44} - q^{-45} </math>|J6=<math>q^{126}-2 q^{125}-q^{124}+2 q^{123}+q^{122}+2 q^{121}-2 q^{120}+4 q^{119}-8 q^{118}-9 q^{117}+5 q^{116}+6 q^{115}+12 q^{114}+16 q^{112}-22 q^{111}-35 q^{110}-9 q^{109}+5 q^{108}+36 q^{107}+21 q^{106}+70 q^{105}-21 q^{104}-79 q^{103}-68 q^{102}-48 q^{101}+30 q^{100}+43 q^{99}+193 q^{98}+62 q^{97}-60 q^{96}-133 q^{95}-165 q^{94}-86 q^{93}-49 q^{92}+295 q^{91}+209 q^{90}+108 q^{89}-57 q^{88}-200 q^{87}-245 q^{86}-311 q^{85}+201 q^{84}+214 q^{83}+285 q^{82}+170 q^{81}+27 q^{80}-189 q^{79}-516 q^{78}-37 q^{77}-79 q^{76}+170 q^{75}+243 q^{74}+381 q^{73}+195 q^{72}-341 q^{71}-51 q^{70}-447 q^{69}-301 q^{68}-148 q^{67}+447 q^{66}+615 q^{65}+212 q^{64}+436 q^{63}-453 q^{62}-784 q^{61}-930 q^{60}-15 q^{59}+645 q^{58}+765 q^{57}+1296 q^{56}+92 q^{55}-879 q^{54}-1711 q^{53}-848 q^{52}+151 q^{51}+960 q^{50}+2146 q^{49}+1001 q^{48}-494 q^{47}-2172 q^{46}-1702 q^{45}-668 q^{44}+748 q^{43}+2720 q^{42}+1943 q^{41}+167 q^{40}-2283 q^{39}-2349 q^{38}-1514 q^{37}+326 q^{36}+3007 q^{35}+2713 q^{34}+832 q^{33}-2217 q^{32}-2784 q^{31}-2212 q^{30}-69 q^{29}+3160 q^{28}+3299 q^{27}+1356 q^{26}-2150 q^{25}-3128 q^{24}-2763 q^{23}-352 q^{22}+3297 q^{21}+3795 q^{20}+1786 q^{19}-2085 q^{18}-3443 q^{17}-3262 q^{16}-644 q^{15}+3332 q^{14}+4210 q^{13}+2258 q^{12}-1817 q^{11}-3570 q^{10}-3697 q^9-1116 q^8+3007 q^7+4328 q^6+2736 q^5-1174 q^4-3219 q^3-3810 q^2-1684 q+2192+3857 q^{-1} +2909 q^{-2} -334 q^{-3} -2323 q^{-4} -3321 q^{-5} -1975 q^{-6} +1165 q^{-7} +2814 q^{-8} +2515 q^{-9} +269 q^{-10} -1243 q^{-11} -2327 q^{-12} -1750 q^{-13} +391 q^{-14} +1636 q^{-15} +1707 q^{-16} +415 q^{-17} -438 q^{-18} -1290 q^{-19} -1195 q^{-20} +47 q^{-21} +765 q^{-22} +919 q^{-23} +276 q^{-24} -49 q^{-25} -574 q^{-26} -664 q^{-27} -20 q^{-28} +291 q^{-29} +409 q^{-30} +117 q^{-31} +64 q^{-32} -207 q^{-33} -323 q^{-34} -9 q^{-35} +87 q^{-36} +155 q^{-37} +33 q^{-38} +67 q^{-39} -58 q^{-40} -139 q^{-41} + q^{-42} +14 q^{-43} +50 q^{-44} +2 q^{-45} +41 q^{-46} -11 q^{-47} -49 q^{-48} +4 q^{-49} -3 q^{-50} +14 q^{-51} -5 q^{-52} +17 q^{-53} - q^{-54} -14 q^{-55} +4 q^{-56} -3 q^{-57} +3 q^{-58} -2 q^{-59} +3 q^{-60} + q^{-61} -3 q^{-62} + q^{-63} </math>|J7=Not Available}}
coloured_jones_4 = <math>q^{60}-2 q^{59}-q^{58}+2 q^{57}+q^{56}+6 q^{55}-8 q^{54}-7 q^{53}+2 q^{52}+3 q^{51}+26 q^{50}-12 q^{49}-23 q^{48}-11 q^{47}-5 q^{46}+63 q^{45}+3 q^{44}-29 q^{43}-38 q^{42}-46 q^{41}+93 q^{40}+35 q^{39}-50 q^{37}-112 q^{36}+86 q^{35}+48 q^{34}+58 q^{33}-18 q^{32}-166 q^{31}+49 q^{30}+14 q^{29}+107 q^{28}+52 q^{27}-177 q^{26}+12 q^{25}-58 q^{24}+124 q^{23}+128 q^{22}-152 q^{21}-8 q^{20}-140 q^{19}+115 q^{18}+193 q^{17}-109 q^{16}-20 q^{15}-215 q^{14}+98 q^{13}+243 q^{12}-59 q^{11}-26 q^{10}-273 q^9+67 q^8+266 q^7-4 q^6-15 q^5-295 q^4+22 q^3+240 q^2+34 q+23-256 q^{-1} -20 q^{-2} +164 q^{-3} +35 q^{-4} +61 q^{-5} -170 q^{-6} -30 q^{-7} +80 q^{-8} +3 q^{-9} +69 q^{-10} -82 q^{-11} -14 q^{-12} +28 q^{-13} -23 q^{-14} +48 q^{-15} -29 q^{-16} +2 q^{-17} +8 q^{-18} -25 q^{-19} +23 q^{-20} -8 q^{-21} +5 q^{-22} +3 q^{-23} -12 q^{-24} +6 q^{-25} -2 q^{-26} +3 q^{-27} + q^{-28} -3 q^{-29} + q^{-30} </math> |

coloured_jones_5 = <math>q^{90}-2 q^{89}-q^{88}+2 q^{87}+q^{86}+2 q^{85}+2 q^{84}-6 q^{83}-9 q^{82}+2 q^{81}+7 q^{80}+11 q^{79}+12 q^{78}-9 q^{77}-29 q^{76}-20 q^{75}+6 q^{74}+33 q^{73}+46 q^{72}+15 q^{71}-46 q^{70}-69 q^{69}-41 q^{68}+30 q^{67}+93 q^{66}+84 q^{65}-4 q^{64}-97 q^{63}-122 q^{62}-49 q^{61}+81 q^{60}+149 q^{59}+99 q^{58}-31 q^{57}-145 q^{56}-150 q^{55}-34 q^{54}+112 q^{53}+169 q^{52}+98 q^{51}-36 q^{50}-152 q^{49}-159 q^{48}-51 q^{47}+101 q^{46}+175 q^{45}+145 q^{44}+6 q^{43}-174 q^{42}-234 q^{41}-108 q^{40}+115 q^{39}+290 q^{38}+248 q^{37}-39 q^{36}-334 q^{35}-360 q^{34}-65 q^{33}+337 q^{32}+481 q^{31}+175 q^{30}-335 q^{29}-575 q^{28}-283 q^{27}+314 q^{26}+661 q^{25}+386 q^{24}-294 q^{23}-738 q^{22}-477 q^{21}+273 q^{20}+802 q^{19}+568 q^{18}-251 q^{17}-869 q^{16}-644 q^{15}+225 q^{14}+906 q^{13}+737 q^{12}-183 q^{11}-951 q^{10}-787 q^9+120 q^8+922 q^7+866 q^6-38 q^5-899 q^4-868 q^3-49 q^2+772 q+880+147 q^{-1} -674 q^{-2} -794 q^{-3} -212 q^{-4} +491 q^{-5} +716 q^{-6} +257 q^{-7} -368 q^{-8} -560 q^{-9} -260 q^{-10} +207 q^{-11} +448 q^{-12} +235 q^{-13} -130 q^{-14} -291 q^{-15} -192 q^{-16} +34 q^{-17} +207 q^{-18} +146 q^{-19} -18 q^{-20} -106 q^{-21} -96 q^{-22} -22 q^{-23} +63 q^{-24} +67 q^{-25} +14 q^{-26} -25 q^{-27} -35 q^{-28} -18 q^{-29} +6 q^{-30} +20 q^{-31} +16 q^{-32} -4 q^{-33} -10 q^{-34} -2 q^{-35} -7 q^{-36} +3 q^{-37} +8 q^{-38} -3 q^{-40} +2 q^{-41} -3 q^{-42} - q^{-43} +3 q^{-44} - q^{-45} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{126}-2 q^{125}-q^{124}+2 q^{123}+q^{122}+2 q^{121}-2 q^{120}+4 q^{119}-8 q^{118}-9 q^{117}+5 q^{116}+6 q^{115}+12 q^{114}+16 q^{112}-22 q^{111}-35 q^{110}-9 q^{109}+5 q^{108}+36 q^{107}+21 q^{106}+70 q^{105}-21 q^{104}-79 q^{103}-68 q^{102}-48 q^{101}+30 q^{100}+43 q^{99}+193 q^{98}+62 q^{97}-60 q^{96}-133 q^{95}-165 q^{94}-86 q^{93}-49 q^{92}+295 q^{91}+209 q^{90}+108 q^{89}-57 q^{88}-200 q^{87}-245 q^{86}-311 q^{85}+201 q^{84}+214 q^{83}+285 q^{82}+170 q^{81}+27 q^{80}-189 q^{79}-516 q^{78}-37 q^{77}-79 q^{76}+170 q^{75}+243 q^{74}+381 q^{73}+195 q^{72}-341 q^{71}-51 q^{70}-447 q^{69}-301 q^{68}-148 q^{67}+447 q^{66}+615 q^{65}+212 q^{64}+436 q^{63}-453 q^{62}-784 q^{61}-930 q^{60}-15 q^{59}+645 q^{58}+765 q^{57}+1296 q^{56}+92 q^{55}-879 q^{54}-1711 q^{53}-848 q^{52}+151 q^{51}+960 q^{50}+2146 q^{49}+1001 q^{48}-494 q^{47}-2172 q^{46}-1702 q^{45}-668 q^{44}+748 q^{43}+2720 q^{42}+1943 q^{41}+167 q^{40}-2283 q^{39}-2349 q^{38}-1514 q^{37}+326 q^{36}+3007 q^{35}+2713 q^{34}+832 q^{33}-2217 q^{32}-2784 q^{31}-2212 q^{30}-69 q^{29}+3160 q^{28}+3299 q^{27}+1356 q^{26}-2150 q^{25}-3128 q^{24}-2763 q^{23}-352 q^{22}+3297 q^{21}+3795 q^{20}+1786 q^{19}-2085 q^{18}-3443 q^{17}-3262 q^{16}-644 q^{15}+3332 q^{14}+4210 q^{13}+2258 q^{12}-1817 q^{11}-3570 q^{10}-3697 q^9-1116 q^8+3007 q^7+4328 q^6+2736 q^5-1174 q^4-3219 q^3-3810 q^2-1684 q+2192+3857 q^{-1} +2909 q^{-2} -334 q^{-3} -2323 q^{-4} -3321 q^{-5} -1975 q^{-6} +1165 q^{-7} +2814 q^{-8} +2515 q^{-9} +269 q^{-10} -1243 q^{-11} -2327 q^{-12} -1750 q^{-13} +391 q^{-14} +1636 q^{-15} +1707 q^{-16} +415 q^{-17} -438 q^{-18} -1290 q^{-19} -1195 q^{-20} +47 q^{-21} +765 q^{-22} +919 q^{-23} +276 q^{-24} -49 q^{-25} -574 q^{-26} -664 q^{-27} -20 q^{-28} +291 q^{-29} +409 q^{-30} +117 q^{-31} +64 q^{-32} -207 q^{-33} -323 q^{-34} -9 q^{-35} +87 q^{-36} +155 q^{-37} +33 q^{-38} +67 q^{-39} -58 q^{-40} -139 q^{-41} + q^{-42} +14 q^{-43} +50 q^{-44} +2 q^{-45} +41 q^{-46} -11 q^{-47} -49 q^{-48} +4 q^{-49} -3 q^{-50} +14 q^{-51} -5 q^{-52} +17 q^{-53} - q^{-54} -14 q^{-55} +4 q^{-56} -3 q^{-57} +3 q^{-58} -2 q^{-59} +3 q^{-60} + q^{-61} -3 q^{-62} + q^{-63} </math> |

coloured_jones_7 = |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],
X[13, 18, 14, 1], X[9, 15, 10, 14], X[7, 17, 8, 16], X[15, 9, 16, 8],
X[13, 18, 14, 1], X[9, 15, 10, 14], X[7, 17, 8, 16], X[15, 9, 16, 8],
X[17, 7, 18, 6]]</nowiki></pre></td></tr>
X[17, 7, 18, 6]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 14]]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 16, 14, 2, 18, 8, 6]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 16, 14, 2, 18, 8, 6]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 2, -1, -3, 2, -3, 4, -3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 2, -1, -3, 2, -3, 4, -3, 4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 14]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_14_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 14]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, {4, 7}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 14]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 14]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 2

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 14]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_14_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 14]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, {4, 7}, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 14]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 9 2
15 + -- - - - 9 t + 2 t
15 + -- - - - 9 t + 2 t
2 t
2 t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 14]][z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 14]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
1 - z + 2 z</nowiki></pre></td></tr>
1 - z + 2 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 14]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 14]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 14]], KnotSignature[Knot[9, 14]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 0}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 14]], KnotSignature[Knot[9, 14]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 14]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 4 2 3 4 5 6

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 14]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 3 4 2 3 4 5 6
6 - q + -- - - - 6 q + 6 q - 5 q + 3 q - 2 q + q
6 - q + -- - - - 6 q + 6 q - 5 q + 3 q - 2 q + q
2 q
2 q
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 14], Knot[11, NonAlternating, 53]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 14], Knot[11, NonAlternating, 53]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 14]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 -4 2 2 4 8 10 12 16 18

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 14]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -8 -6 -4 2 2 4 8 10 12 16 18
-q + q + q - q + -- + q + q + q - 2 q - q - q + q +
-q + q + q - q + -- + q + q + q - 2 q - q - q + q +
2
2
Line 146: Line 97:
20
20
q</nowiki></pre></td></tr>
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 14]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 14]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4
-6 2 -2 2 2 z z 2 2 4 z
-6 2 -2 2 2 z z 2 2 4 z
1 + a - -- + a + z - ---- + -- - a z + z + --
1 + a - -- + a + z - ---- + -- - a z + z + --
4 4 2 2
4 4 2 2
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 14]][a, z]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 14]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
-6 2 -2 3 z 5 z 2 z 4 z 10 z 8 z 2 2
-6 2 -2 3 z 5 z 2 z 4 z 10 z 8 z 2 2
1 - a - -- - a - --- - --- - --- + ---- + ----- + ---- - 2 a z +
1 - a - -- - a - --- - --- - --- + ---- + ----- + ---- - 2 a z +
Line 178: Line 127:
3 a 4 2
3 a 4 2
a a a</nowiki></pre></td></tr>
a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 14]], Vassiliev[3][Knot[9, 14]]}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 14]], Vassiliev[3][Knot[9, 14]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-1, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 14]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 2 2 3

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 14]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 2 1 2 2 3
- + 3 q + ----- + ----- + ----- + ---- + --- + 3 q t + 3 q t +
- + 3 q + ----- + ----- + ----- + ---- + --- + 3 q t + 3 q t +
q 7 3 5 2 3 2 3 q t
q 7 3 5 2 3 2 3 q t
Line 193: Line 140:
11 5 13 6
11 5 13 6
q t + q t</nowiki></pre></td></tr>
q t + q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 14], 2][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 14], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 3 -7 6 11 5 13 23 9 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 3 -7 6 11 5 13 23 9 2
21 + q - -- + q + -- - -- + -- + -- - -- + - - 33 q + 9 q +
21 + q - -- + q + -- - -- + -- + -- - -- + - - 33 q + 9 q +
8 6 5 4 3 2 q
8 6 5 4 3 2 q
Line 205: Line 151:
11 12 13 14 15 16 17 18
11 12 13 14 15 16 17 18
5 q + 15 q - 6 q - 5 q + 6 q - q - 2 q + q</nowiki></pre></td></tr>
5 q + 15 q - 6 q - 5 q + 6 q - q - 2 q + q</nowiki></pre></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Revision as of 09:41, 30 August 2005

9 13.gif

9_13

9 15.gif

9_15

9 14.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 14 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X13,18,14,1 X9,15,10,14 X7,17,8,16 X15,9,16,8 X17,7,18,6
Gauss code -1, 4, -3, 1, -2, 9, -7, 8, -6, 3, -4, 2, -5, 6, -8, 7, -9, 5
Dowker-Thistlethwaite code 4 10 12 16 14 2 18 8 6
Conway Notation [41112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 5,

Braid index is 5

9 14 ML.gif 9 14 AP.gif
[{11, 3}, {2, 9}, {10, 4}, {3, 5}, {9, 11}, {4, 1}, {6, 2}, {5, 7}, {8, 6}, {7, 10}, {1, 8}]

[edit Notes on presentations of 9 14]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-4][-7]
Hyperbolic Volume 8.95499
A-Polynomial See Data:9 14/A-polynomial

[edit Notes for 9 14's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 14's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 37, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11n53,}

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-10123456χ
13         11
11        1 -1
9       21 1
7      31  -2
5     32   1
3    33    0
1   33     0
-1  24      2
-3 12       -1
-5 2        2
-71         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials