The Alexander-Conway Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 31: Line 31:
in = <nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki> |
in = <nowiki>alex = Alexander[Knot[8, 18]][t]</nowiki> |
out= <nowiki> -3 5 10 2 3
out= <nowiki> -3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
13 - t -- - -- - 10 t 5 t - t
2 t
2 t
t</nowiki>}}
t</nowiki>}}
Line 42: Line 42:
in = <nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki> |
in = <nowiki>Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]</nowiki> |
out= <nowiki> -3 5 10 2 3
out= <nowiki> -3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
13 - t -- - -- - 10 t 5 t - t
2 t
2 t
t</nowiki>}}
t</nowiki>}}
Line 89: Line 89:
{{Knot Image Pair|K11a99|gif|K11a277|gif}}
{{Knot Image Pair|K11a99|gif|K11a277|gif}}


Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair [[K11a99]] and [[K11a277]]. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring <math>{\mathbb Z}[t]</math> while the second Alexander ideal of the second knot is the smaller ideal generated by <math>3</math> and by <math>1+t</math>:
Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair [[K11a99]] and [[K11a277]]. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring <math>{\mathbb Z}[t]</math> while the second Alexander ideal of the second knot is the smaller ideal generated by <math>3</math> and by <math>1 t</math>:


<!--$${K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};$$-->
<!--$${K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};$$-->
Line 119: Line 119:
n = 13 |
n = 13 |
in = <nowiki>Alexander[K2, 2][t]</nowiki> |
in = <nowiki>Alexander[K2, 2][t]</nowiki> |
out= <nowiki>{3, 1 + t}</nowiki>}}
out= <nowiki>{3, 1 t}</nowiki>}}
<!--END-->
<!--END-->


Finally, the Alexander polynomial attains <!--$Length[Union[Alexander[#]& /@ AllKnots[]]]$--><!--Robot Land, no human edits to "END"-->551<!--END--> values on the <!--$Length[AllKnots[]]$--><!--Robot Land, no human edits to "END"-->802<!--END--> knots known to <code>KnotTheory`</code>:
Finally, the Alexander polynomial attains <!--$Length[Union[Alexander[#]

<!--$$Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 14 |
in = <nowiki>Length /@ {Union[Alexander[#]& /@ AllKnots[]], AllKnots[]}</nowiki> |
out= <nowiki>{551, 802}</nowiki>}}
<!--END-->

Revision as of 06:44, 17 June 2007


(For In[1] see Setup)

In[1]:= ?Alexander
Alexander[K][t] computes the Alexander polynomial of a knot K as a function of the variable t. Alexander[K, r][t] computes a basis of the r'th Alexander ideal of K in Z[t].
In[2]:= Alexander::about
The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
In[3]:= ?Conway
Conway[K][z] computes the Conway polynomial of a knot K as a function of the variable z.
8 18.gif
8_18

The Alexander polynomial and the Conway polynomial of a knot always satisfy . Let us verify this relation for the knot 8_18:

In[4]:= alex = Alexander[Knot[8, 18]][t]
Out[4]= -3 5 10 2 3 13 - t -- - -- - 10 t 5 t - t 2 t t
In[5]:= Expand[Conway[Knot[8, 18]][Sqrt[t] - 1/Sqrt[t]]]
Out[5]= -3 5 10 2 3 13 - t -- - -- - 10 t 5 t - t 2 t t

The determinant of a knot is . Hence for 8_18 it is

In[6]:= Abs[alex /. t -> -1]
Out[6]= 45

Alternatively (see The Determinant and the Signature):

In[7]:= KnotDet[Knot[8, 18]]
Out[7]= 45

, the (standardly normalized) type 2 Vassiliev invariant of a knot is the coefficient of in its Conway polynomial:

In[8]:= Coefficient[Conway[Knot[8, 18]][z], z^2]
Out[8]= 1

Alternatively (see Finite Type (Vassiliev) Invariants),

In[9]:= Vassiliev[2][Knot[8, 18]]
Out[9]= 1
K11a99.gif
K11a99
K11a277.gif
K11a277

Sometimes two knots have the same Alexander polynomial but different Alexander ideals. An example is the pair K11a99 and K11a277. They have the same Alexander polynomial, but the second Alexander ideal of the first knot is the whole ring while the second Alexander ideal of the second knot is the smaller ideal generated by and by :

In[10]:= {K1, K2} = {Knot[11, Alternating, 99], Knot[11, Alternating, 277]};
In[11]:= Alexander[K1] == Alexander[K2]
Out[11]= True
In[12]:= Alexander[K1, 2][t]
Out[12]= {1}
In[13]:= Alexander[K2, 2][t]
Out[13]= {3, 1 t}

Finally, the Alexander polynomial attains